使用 Palantir 对单细胞数据中的细胞命运概率进行特征描述。

Characterization of cell fate probabilities in single-cell data with Palantir.

机构信息

Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Nat Biotechnol. 2019 Apr;37(4):451-460. doi: 10.1038/s41587-019-0068-4. Epub 2019 Mar 21.

Abstract

Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir's resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and recapitulating gene expression trends during differentiation, is generalizable to diverse tissue types, and is well-suited to resolving less-studied differentiating systems.

摘要

单细胞 RNA 测序研究分化系统提出了关于分化和细胞命运的离散性和连续性的基本问题。在这里,我们介绍了 Palantir,这是一种通过将细胞命运视为概率过程并利用熵来衡量轨迹上细胞可塑性的算法,该算法可以对分化细胞的轨迹进行建模。Palantir 为每个细胞状态生成细胞的高分辨率拟时间排序,并为每个终态分配分化为该终态的概率。我们将我们的算法应用于人类骨髓单细胞 RNA 测序数据,并检测造血分化的重要标志。Palantir 的分辨率能够识别驱动谱系命运选择的关键转录因子,并密切跟踪细胞失去可塑性的时间。我们表明,Palantir 在识别细胞谱系和再现分化过程中的基因表达趋势方面优于现有算法,可推广到不同的组织类型,并且非常适合解决研究较少的分化系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ead/7549125/4b1522485969/nihms-1521379-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索