Bruce Kimberley D, Dobrinskikh Evgenia, Wang Hong, Rudenko Ivan, Gao Hong, Libby Andrew E, Gorkhali Sachi, Yu Tian, Zsombok Andrea, Eckel Robert H
Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
Department of Medicine, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
Metabolites. 2020 Sep 28;10(10):385. doi: 10.3390/metabo10100385.
The autonomic regulation of hepatic metabolism offers a novel target for the treatment of non-alcoholic fatty liver disease (NAFLD). However, the molecular characteristics of neurons that regulate the brain-liver axis remain unclear. Since mice lacking neuronal lipoprotein lipase (LPL) develop perturbations in neuronal lipid-sensing and systemic energy balance, we reasoned that LPL might be a component of pre-autonomic neurons involved in the regulation of hepatic metabolism. Here, we show that, despite obesity, mice with reduced neuronal LPL (NEXCreLPL (LPL KD)) show improved glucose tolerance and reduced hepatic lipid accumulation with aging compared to wilt type (WT) controls (LPL). To determine the effect of LPL deficiency on neuronal physiology, liver-related neurons were identified in the paraventricular nucleus (PVN) of the hypothalamus using the transsynaptic retrograde tracer PRV-152. Patch-clamp studies revealed reduced inhibitory post-synaptic currents in liver-related neurons of LPL KD mice. Fluorescence lifetime imaging microscopy (FLIM) was used to visualize metabolic changes in LPL-depleted neurons. Quantification of free vs. bound nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) revealed increased glucose utilization and TCA cycle flux in LPL-depleted neurons compared to controls. Global metabolomics from hypothalamic cell lines either deficient in or over-expressing LPL recapitulated these findings. Our data suggest that LPL is a novel feature of liver-related preautonomic neurons in the PVN. Moreover, LPL loss is sufficient to cause changes in neuronal substrate utilization and function, which may precede changes in hepatic metabolism.
肝脏代谢的自主调节为非酒精性脂肪性肝病(NAFLD)的治疗提供了一个新靶点。然而,调节脑-肝轴的神经元的分子特征仍不清楚。由于缺乏神经元脂蛋白脂肪酶(LPL)的小鼠在神经元脂质感知和全身能量平衡方面出现紊乱,我们推测LPL可能是参与肝脏代谢调节的自主神经前体神经元的一个组成部分。在此,我们表明,尽管肥胖,但与野生型(WT)对照(LPL)相比,神经元LPL减少的小鼠(NEXCreLPL(LPL KD))随着年龄增长表现出改善的糖耐量和减少的肝脏脂质积累。为了确定LPL缺乏对神经元生理学的影响,使用跨突触逆行示踪剂PRV-152在下丘脑室旁核(PVN)中鉴定与肝脏相关的神经元。膜片钳研究显示,LPL KD小鼠与肝脏相关的神经元中抑制性突触后电流减少。荧光寿命成像显微镜(FLIM)用于观察LPL缺失神经元的代谢变化。与对照组相比,游离与结合烟酰胺腺嘌呤二核苷酸(NADH)和黄素腺嘌呤二核苷酸(FAD)的定量分析显示,LPL缺失神经元中的葡萄糖利用率和三羧酸循环通量增加。来自下丘脑细胞系的整体代谢组学研究,无论是LPL缺乏还是过表达,都证实了这些发现。我们的数据表明,LPL是PVN中与肝脏相关的自主神经前体神经元的一个新特征。此外,LPL缺失足以导致神经元底物利用和功能的变化,这可能先于肝脏代谢的变化。