Yang Eric C, Brenes David R, Vohra Imran S, Schwarz Richard A, Williams Michelle D, Vigneswaran Nadarajah, Gillenwater Ann M, Richards-Kortum Rebecca R
Baylor College of Medicine, Houston, Texas, United States.
Rice University, Department of Bioengineering, Houston, Texas, United States.
J Med Imaging (Bellingham). 2020 Sep;7(5):054502. doi: 10.1117/1.JMI.7.5.054502. Epub 2020 Sep 21.
optical imaging technologies like high-resolution microendoscopy (HRME) can image nuclei of the oral epithelium. In principle, automated algorithms can then calculate nuclear features to distinguish neoplastic from benign tissue. However, images frequently contain regions without visible nuclei, due to biological and technical factors, decreasing the data available to and accuracy of image analysis algorithms. We developed the nuclear density-confidence interval (ND-CI) algorithm to determine if an HRME image contains sufficient nuclei for classification, or if a better image is required. The algorithm uses a convolutional neural network to exclude image regions without visible nuclei. Then the remaining regions are used to estimate a confidence interval (CI) for the number of abnormal nuclei , a feature used by a previously developed algorithm (called the ND algorithm), to classify images as benign or neoplastic. The range of the CI determines whether the ND-CI algorithm can classify an image with confidence, and if so, the predicted category. The ND and ND-CI algorithm were compared by calculating their positive predictive value (PPV) and negative predictive value (NPV) on 82 oral biopsies with histopathologically confirmed diagnoses. After excluding the images that could not be classified with confidence, the ND-CI algorithm had higher PPV (65% versus 59%) and NPV (78% versus 75%) than the ND algorithm. The ND-CI algorithm could improve the real-time classification of HRME images of the oral epithelium by informing the user if an improved image is required for diagnosis.
像高分辨率显微内镜检查(HRME)这样的光学成像技术能够对口腔上皮细胞核进行成像。原则上,自动化算法随后可以计算细胞核特征,以区分肿瘤组织和良性组织。然而,由于生物学和技术因素,图像中经常包含没有可见细胞核的区域,这减少了图像分析算法可用的数据以及算法的准确性。我们开发了核密度置信区间(ND-CI)算法,以确定一张HRME图像是否包含足够的细胞核用于分类,或者是否需要更好的图像。该算法使用卷积神经网络来排除没有可见细胞核的图像区域。然后,将剩余区域用于估计异常细胞核数量的置信区间(CI),这是先前开发的一种算法(称为ND算法)用于将图像分类为良性或肿瘤性的一个特征。CI的范围决定了ND-CI算法是否能够自信地对图像进行分类,如果可以,则决定预测的类别。通过在82例经组织病理学确诊的口腔活检样本上计算其阳性预测值(PPV)和阴性预测值(NPV),对ND算法和ND-CI算法进行了比较。在排除无法自信分类的图像后,ND-CI算法的PPV(65%对59%)和NPV(78%对75%)高于ND算法。ND-CI算法可以通过告知用户是否需要改进图像以进行诊断,来提高口腔上皮HRME图像的实时分类。