Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
State Key Laboratory of Crystal Materials, Shandong University, Jinan, China.
Cell Prolif. 2020 Nov;53(11):e12917. doi: 10.1111/cpr.12917. Epub 2020 Oct 1.
Articular cartilage plays a vital role in bearing and buffering. Injured cartilage and subchondral bone repair is a crucial challenge in cartilage tissue engineering due to the peculiar structure of osteochondral unit and the requirement of osteogenic/chondrogenic bi-directional differentiation. Based on the bionics principle, a nanotextured silk fibroin (SF)-chondroitin sulphate (CS)/hydroxyapatite (HAp) nanowire tough bilayer structure was prepared for osteochondral repair.
The SF-CS/HAp membrane was constructed by alcohol-induced β-sheet formation serving as the physical crosslink. Its osteochondral repairing capacity was evaluated by culturing bone marrow mesenchymal stem cells (BMSCs) in vitro and constructing a rat osteochondral defect model in vivo.
The bilayer SF-CS/HAp membrane with satisfactory mechanical properties similar to natural cartilage imitated the natural osteochondral unit structural layers and exerted the function of bearing and buffering timely after in vivo implantation. SF-CS layer upregulated the expression of chondrogenesis-related genes of BMSCs by surface nanotopography and sustained release CS. Meanwhile, nanotextured HAp layer assembled with nanowire endowed the membrane with an osteogenic differentiation tendency for BMSCs. In vivo results proved that the biomimetic bilayer structure dramatically promoted new cartilage formation and subchondral bone remodelling for osteochondral defect model after implantation.
The SF-CS/HAp biomimetic bilayer membrane provides a promising strategy for precise osteochondral repair.
关节软骨在承载和缓冲方面起着至关重要的作用。由于骨软骨单位的特殊结构和对成骨/成软骨双向分化的要求,受伤的软骨和软骨下骨修复是软骨组织工程中的一个关键挑战。基于仿生学原理,我们制备了一种具有纳米结构的丝素蛋白(SF)-硫酸软骨素(CS)/羟基磷灰石(HAp)纳米线坚韧的双层结构,用于骨软骨修复。
SF-CS/HAp 膜是通过醇诱导的 β-折叠形成作为物理交联制备的。通过体外培养骨髓间充质干细胞(BMSCs)和体内构建大鼠骨软骨缺损模型来评估其骨软骨修复能力。
具有类似天然软骨力学性能的双层 SF-CS/HAp 膜模仿了天然骨软骨单位的结构层,在体内植入后能及时发挥承载和缓冲作用。SF-CS 层通过表面纳米形貌和持续释放 CS 上调 BMSCs 的软骨生成相关基因表达。同时,纳米结构的 HAp 层与纳米线组装赋予了膜对 BMSCs 的成骨分化倾向。体内结果证明,仿生双层结构显著促进了植入后骨软骨缺损模型的新软骨形成和软骨下骨重塑。
SF-CS/HAp 仿生双层膜为精确的骨软骨修复提供了一种有前途的策略。