Suppr超能文献

基于计算智能技术的脑瘫步态自动诊断:一种低成本多传感器方法。

Automatic Diagnosis of Cerebral Palsy Gait Using Computational Intelligence Techniques: A Low-Cost Multi-Sensor Approach.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2488-2496. doi: 10.1109/TNSRE.2020.3028203. Epub 2020 Nov 6.

Abstract

Automatic diagnosing of Cerebral Palsy (CP) gait is crucial in quantitative evaluation of a therapeutic intervention. Existing systems for such gait assessment are expensive and require user intervention. This study proposes a low-cost gait assessment system equipped with multiple Kinect sensors. Forty subjects (20 CP patients and 20 normal) were recruited for the experiment. To remove outlier frames from the combined gait signal of multiple sensors a data driven algorithm was proposed. Different supervised classifiers along with extreme learning machine were investigated to diagnose CP gait. In addition, a feature level analysis was also performed. Several spatio-temporal features (i.e. step length, stride length, stride time, etc.) were extracted. The strength of walking ratio, a speed invariant feature, to detect CP gait was thoroughly analyzed. The proposed system outperformed state-of-the-art with ≈98% of accuracy (sensitivity: 100%, and specificity: 96.87%). Results indicate a substantial improvement in abnormality detection performance after outlier removal. Based on ReliefF feature ranking algorithm, walking ratio ranked the best among other classical gait features. Performance of all classifiers increased substantially using walking ratio as a feature. Extreme learning machine demonstrated a competing performance in all cases. The higher classification accuracy of this low-cost system using only a single feature makes it attractive for CP gait detection.

摘要

脑性瘫痪(CP)步态的自动诊断在治疗干预的定量评估中至关重要。现有的此类步态评估系统价格昂贵且需要用户干预。本研究提出了一种配备多个 Kinect 传感器的低成本步态评估系统。实验招募了 40 名受试者(20 名 CP 患者和 20 名正常受试者)。为了从多个传感器的组合步态信号中去除异常帧,提出了一种数据驱动的算法。研究了不同的监督分类器和极限学习机来诊断 CP 步态。此外,还进行了特征级分析。提取了几个时空特征(即步长、步长、步长时间等)。对强行走比(一种速度不变的特征)进行了深入分析,以检测 CP 步态。该系统的性能优于最先进的系统,准确率约为 98%(灵敏度:100%,特异性:96.87%)。结果表明,异常值去除后,异常检测性能有了显著提高。基于 ReliefF 特征排序算法,行走比在其他经典步态特征中排名第一。使用行走比作为特征后,所有分类器的性能都有了显著提高。极限学习机在所有情况下都表现出了具有竞争力的性能。该低成本系统仅使用单个特征即可实现较高的分类精度,这使其在 CP 步态检测方面具有吸引力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验