Suppr超能文献

基于随机森林的低成本深度相机偏瘫步态分类分析。

Random forest-based classsification and analysis of hemiplegia gait using low-cost depth cameras.

机构信息

East China Jiaotong University, Nanchang, China.

Jiangxi Provincial People's Hospital, Nanchang, China.

出版信息

Med Biol Eng Comput. 2020 Feb;58(2):373-382. doi: 10.1007/s11517-019-02079-7. Epub 2019 Dec 18.

Abstract

Hemiplegia is a form of paralysis that typically has the symptom of dysbasia. In current clinical rehabilitations, to measure the level of hemiplegia gaits, clinicians often conduct subject evaluations through observations, which is unreliable and inaccurate. The Microsoft Kinect sensor (MS Kinect) is a widely used, low-cost depth sensor that can be used to detect human behaviors in real time. The purpose of this study is to investigate the usage of the Kinect data for the classification and analysis of hemiplegia gait. We first acquire the gait data by using a MS Kinect and extract a set of gait features including the stride length, gait speed, left/right moving distances, and up/down moving distances. With the gait data of 60 subjects including 20 hemiplegia patients and 40 healthy subjects, we employ a random forest-based classification approach to analyze the importances of different gait features for hemiplegia classification. Thanks to the over-fitting avoidance nature of the random forest approach, we do not need to have a careful control over the percentage of patients in the training data. In our experiments, our approach obtained the averaged classification accuracy of 90.65% among all the combinations of the gait features, which substantially outperformed state-of-the-art methods. The best classification accuracy of our approach is 95.45%, which is superior than all existing methods. Additionally, our approach also correctly reveals the importance of different gait features for hemiplegia classification. Our random forest-based approach outperforms support vector machine-based method and the Bayesian-based method, and can effectively extract gait features of subjects with hemiplegia for the classification and analysis of hemiplegia. Graphical Abstract Random Forest based Classsification and Analysis of Hemiplegia Gait using Low-cost Depth Cameras. Left: Motion capture with MS Kinect; Top-right: Random Forest Classsification based on the extracted gait features; Bottom-right: Sensitivity and specificity evaluation of the proposed classification approach.

摘要

偏瘫是一种瘫痪形式,通常具有运动失调的症状。在当前的临床康复中,为了测量偏瘫步态的水平,临床医生通常通过观察对受试者进行评估,这种方法既不可靠也不准确。微软 Kinect 传感器(MS Kinect)是一种广泛使用的低成本深度传感器,可用于实时检测人体行为。本研究旨在探讨 Kinect 数据在偏瘫步态分类和分析中的应用。我们首先使用 MS Kinect 采集步态数据,并提取了一组步态特征,包括步长、步态速度、左右移动距离和上下移动距离。利用包括 20 名偏瘫患者和 40 名健康受试者在内的 60 名受试者的步态数据,我们采用基于随机森林的分类方法来分析不同步态特征对偏瘫分类的重要性。由于随机森林方法避免了过拟合,因此我们不需要对训练数据中患者的比例进行仔细控制。在实验中,我们的方法在所有步态特征的组合中平均分类准确率达到 90.65%,明显优于最先进的方法。我们方法的最佳分类准确率为 95.45%,优于所有现有方法。此外,我们的方法还正确揭示了不同步态特征对偏瘫分类的重要性。我们的基于随机森林的方法优于基于支持向量机的方法和基于贝叶斯的方法,可以有效地提取偏瘫患者的步态特征,用于偏瘫的分类和分析。 图形摘要 使用低成本深度相机对偏瘫步态进行基于随机森林的分类和分析。左:使用 MS Kinect 进行运动捕捉;右上:基于提取的步态特征的随机森林分类;右下:提出的分类方法的敏感性和特异性评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验