Jun Kooksung, Lee Keunhan, Lee Sanghyub, Lee Hwanho, Kim Mun Sang
Robocare, Seongnam 13449, Republic of Korea.
School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
Bioengineering (Basel). 2023 Sep 27;10(10):1133. doi: 10.3390/bioengineering10101133.
Human skeleton data obtained using a depth camera have been used for pathological gait recognition to support doctor or physician diagnosis decisions. Most studies for skeleton-based pathological gait recognition have used either raw skeleton sequences directly or gait features, such as gait parameters and joint angles, extracted from raw skeleton sequences. We hypothesize that using skeleton, joint angles, and gait parameters together can improve recognition performance. This study aims to develop a deep neural network model that effectively combines different types of input data. We propose a hybrid deep neural network framework composed of a graph convolutional network, recurrent neural network, and artificial neural network to effectively encode skeleton sequences, joint angle sequences, and gait parameters, respectively. The features extracted from three different input data types are fused and fed into the final classification layer. We evaluate the proposed model on two different skeleton datasets (a simulated pathological gait dataset and a vestibular disorder gait dataset) that were collected using an Azure Kinect. The proposed model, with multiple types of input, improved the pathological gait recognition performance compared to single input models on both datasets. Furthermore, it achieved the best performance among the state-of-the-art models for skeleton-based action recognition.
使用深度相机获取的人体骨骼数据已被用于病理性步态识别,以辅助医生做出诊断决策。大多数基于骨骼的病理性步态识别研究要么直接使用原始骨骼序列,要么使用从原始骨骼序列中提取的步态特征,如步态参数和关节角度。我们假设,同时使用骨骼、关节角度和步态参数可以提高识别性能。本研究旨在开发一种能有效结合不同类型输入数据的深度神经网络模型。我们提出了一种由图卷积网络、循环神经网络和人工神经网络组成的混合深度神经网络框架,以分别有效地编码骨骼序列、关节角度序列和步态参数。从三种不同类型输入数据中提取的特征被融合,并输入到最终的分类层。我们在使用Azure Kinect收集的两个不同骨骼数据集(一个模拟病理性步态数据集和一个前庭障碍步态数据集)上评估了所提出的模型。与单输入模型相比,所提出的具有多种类型输入的模型在两个数据集上均提高了病理性步态识别性能。此外,它在基于骨骼的动作识别的最先进模型中取得了最佳性能。