Suppr超能文献

黄热病的空间流行病学:确定 2016-2018 年巴西疫情的决定因素和高危地区。

Spatial epidemiology of yellow fever: Identification of determinants of the 2016-2018 epidemics and at-risk areas in Brazil.

机构信息

Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana.

Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

出版信息

PLoS Negl Trop Dis. 2020 Oct 1;14(10):e0008691. doi: 10.1371/journal.pntd.0008691. eCollection 2020 Oct.

Abstract

Optimise control strategies of infectious diseases, identify factors that favour the circulation of pathogens, and propose risk maps are crucial challenges for global health. Ecological niche modelling, once relying on an adequate framework and environmental descriptors can be a helpful tool for such purposes. Despite the existence of a vaccine, yellow fever (YF) is still a public health issue. Brazil faced massive sylvatic YF outbreaks from the end of 2016 up to mid-2018, but cases in human and non-human primates have been recorded until the beginning of 2020. Here we used both human and monkey confirmed YF cases from two epidemic periods (2016/2017 and 2017/2018) to describe the spatial distribution of the cases and explore how biotic and abiotic factors drive their occurrence. The distribution of YF cases largely overlaps for humans and monkeys, and a contraction of the spatial extent associated with a southward displacement is observed during the second period of the epidemics. More contributive variables to the spatiotemporal heterogeneity of cases were related to biotic factors (mammal richness), abiotic factors (temperature and precipitation), and some human-related variables (population density, human footprint, and human vaccination coverage). Both projections of the most favourable conditions showed similar trends with a contraction of the more at-risk areas. Once extrapolated at a large scale, the Amazon basin remains at lower risk, although surrounding forest regions and notably the North-West region, would face a higher risk. Spatial projections of infectious diseases often relied on climatic variables only; here for both models, we instead highlighted the importance of considering local biotic conditions, hosts vulnerability, social and epidemiological factors to run the spatial risk analysis correctly: all YF cases occurring later on, in 2019 and 2020, were observed in the predicted at-risk areas.

摘要

优化传染病控制策略,确定有利于病原体传播的因素,并提出风险图,这是全球卫生的重大挑战。生态位模型构建,一旦有了适当的框架和环境描述符,就可以成为此类目的的有用工具。尽管存在疫苗,但黄热病 (YF) 仍然是一个公共卫生问题。巴西在 2016 年底至 2018 年年中期间遭遇了大规模的丛林黄热病爆发,但在 2020 年初之前,仍有人类和非人类灵长类动物感染的病例记录。在这里,我们使用了两个流行期(2016/2017 年和 2017/2018 年)的人类和猴子确诊的 YF 病例,描述了病例的空间分布,并探讨了生物和非生物因素如何驱动其发生。人类和猴子的 YF 病例分布高度重叠,在第二次流行期间,观察到病例的空间范围缩小,并且向南移动。对病例时空异质性贡献更大的变量与生物因素(哺乳动物丰富度)、非生物因素(温度和降水)以及一些与人类相关的变量(人口密度、人类足迹和人类疫苗接种覆盖率)有关。两个最有利条件的预测都显示出类似的趋势,即风险较高的地区缩小。一旦在较大范围内推断,亚马逊流域的风险仍然较低,尽管周围的森林地区,特别是西北部地区,将面临更高的风险。传染病的空间预测通常仅依赖于气候变量;在这里,对于这两个模型,我们强调了考虑当地生物条件、宿主脆弱性、社会和流行病学因素的重要性,以正确运行空间风险分析:2019 年和 2020 年观察到的所有 YF 病例都发生在预测的高风险地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9357/7553304/7af353082d6d/pntd.0008691.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验