Suppr超能文献

预测阿片类药物过量死亡率的未来趋势:来自两个美国州的案例。

Predicting the Future Course of Opioid Overdose Mortality: An Example From Two US States.

机构信息

From the Department of Behavioral and Community Health Sciences, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA.

Center for Opioid Epidemiology and Policy, Division of Epidemiology, Department of Population Health, New York University, New York, NY.

出版信息

Epidemiology. 2021 Jan;32(1):61-69. doi: 10.1097/EDE.0000000000001264.

Abstract

BACKGROUND

The rapid growth of opioid abuse and the related mortality across the United States has spurred the development of predictive models for the allocation of public health resources. These models should characterize heterogeneous growth across states using a drug epidemic framework that enables assessments of epidemic onset, rates of growth, and limited capacities for epidemic growth.

METHODS

We used opioid overdose mortality data for 146 North and South Carolina counties from 2001 through 2014 to compare the retrodictive and predictive performance of a logistic growth model that parameterizes onsets, growth, and carrying capacity within a traditional Bayesian Poisson space-time model.

RESULTS

In fitting the models to past data, the performance of the logistic growth model was superior to the standard Bayesian Poisson space-time model (deviance information criterion: 8,088 vs. 8,256), with reduced spatial and independent errors. Predictively, the logistic model more accurately estimated fatality rates 1, 2, and 3 years in the future (root mean squared error medians were lower for 95.7% of counties from 2012 to 2014). Capacity limits were higher in counties with greater population size, percent population age 45-64, and percent white population. Epidemic onset was associated with greater same-year and past-year incidence of overdose hospitalizations.

CONCLUSION

Growth in annual rates of opioid fatalities was capacity limited, heterogeneous across counties, and spatially correlated, requiring spatial epidemic models for the accurate and reliable prediction of future outcomes related to opioid abuse. Indicators of risk are identifiable and can be used to predict future mortality outcomes.

摘要

背景

美国阿片类药物滥用及其相关死亡率的迅速增长,促使人们开发了用于分配公共卫生资源的预测模型。这些模型应使用药物流行框架来描述各州之间的异质增长,从而能够评估流行的开始、增长率和有限的流行增长能力。

方法

我们使用了 2001 年至 2014 年北卡罗来纳州和南卡罗来纳州 146 个县的阿片类药物过量死亡数据,比较了对数增长模型和传统贝叶斯泊松时空模型在参数化流行开始、增长和承载能力方面的回溯和预测性能。

结果

在将模型拟合到过去的数据中时,对数增长模型的性能优于标准的贝叶斯泊松时空模型(偏差信息准则:8088 对 8256),具有更小的空间和独立误差。在预测方面,对数模型更准确地估计了未来 1、2 和 3 年的死亡率(2012 年至 2014 年,95.7%的县的中值均方根误差更低)。承载能力在人口规模较大、45-64 岁人口比例和白人人口比例较高的县中更高。流行的开始与同年和过去一年过量用药住院的发生率更高有关。

结论

阿片类药物致命性年度增长率受到能力限制,各县之间存在异质性,且存在空间相关性,因此需要使用空间流行模型来准确可靠地预测与阿片类药物滥用相关的未来结果。风险指标是可识别的,可以用于预测未来的死亡结果。

相似文献

引用本文的文献

10
Fatal overdose: Predicting to prevent.致命性过量用药:预测以预防。
Int J Drug Policy. 2022 Jun;104:103677. doi: 10.1016/j.drugpo.2022.103677. Epub 2022 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验