Suppr超能文献

聚合物体系的冷冻结构:应用深度神经网络对无添加剂和添加了离子性或非离子性增溶剂的大孔聚乙烯醇冷冻凝胶的结构特征进行分类。

Cryostructuring of Polymeric Systems : Application of Deep Neural Networks for the Classification of Structural Features Peculiar to Macroporous Poly(vinyl alcohol) Cryogels Prepared without and with the Additives of Chaotropes or Kosmotropes.

机构信息

A.A. Karkevich Institute for Information Transmission Problems of Russian Academy of Sciences, 127051 Moscow, Russia.

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia.

出版信息

Molecules. 2020 Sep 29;25(19):4480. doi: 10.3390/molecules25194480.

Abstract

Macroporous poly(vinyl alcohol) cryogels (PVACGs) are physical gels formed via cryogenic processing of polymer solutions. The properties of PVACGs depend on many factors: the characteristics and concentration of PVA, the absence or presence of foreign solutes, and the freezing-thawing conditions. These factors also affect the macroporous morphology of PVACGs, their total porosity, pore size and size distribution, etc. In this respect, there is the problem with developing a scientifically-grounded classification of the morphological features inherent in various PVACGs. In this study PVA cryogels have been prepared at different temperatures when the initial polymer solutions contained chaotropic or kosmotropic additives. After the completion of gelation, the rigidity and heat endurance of the resultant PVACGs were evaluated, and their macroporous structure was investigated using optical microscopy. The images obtained were treated mathematically, and deep neural networks were used for the classification of these images. Training and test sets were used for their classification. The results of this classification for the specific deep neural network architecture are presented, and the morphometric parameters of the macroporous structure are discussed. It was found that deep neural networks allow us to reliably classify the type of additive or its absence when using a combined dataset.

摘要

大孔聚(乙烯醇)冷冻凝胶(PVACG)是通过聚合物溶液的低温处理形成的物理凝胶。PVACG 的性质取决于许多因素:PVA 的特性和浓度、是否存在外来溶质,以及冷冻-解冻条件。这些因素还会影响 PVACG 的大孔形态、总孔隙率、孔径和孔径分布等。在这方面,存在着为各种 PVACG 中固有的形态特征开发科学基础分类的问题。在这项研究中,在初始聚合物溶液含有离液剂或盐析剂添加剂的不同温度下制备了 PVA 冷冻凝胶。凝胶形成后,评估了所得 PVACG 的刚性和耐热性,并使用光学显微镜研究了其大孔结构。对获得的图像进行了数学处理,并使用深度神经网络对这些图像进行分类。使用训练集和测试集对其进行分类。给出了特定深度神经网络结构的这种分类的结果,并讨论了大孔结构的形态参数。结果发现,深度神经网络允许我们在使用组合数据集时可靠地对添加剂的类型或其不存在进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3731/7582390/899469aba12c/molecules-25-04480-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验