Bhandari Arihant, Anton Lucian, Dziedzic Jacek, Peng Chao, Kramer Denis, Skylaris Chris-Kriton
School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom.
CCFE, Culham Science Centre, Abingdon, United Kingdom.
J Chem Phys. 2020 Sep 28;153(12):124101. doi: 10.1063/5.0021210.
Density functional theory (DFT) is often used for simulating extended materials such as infinite crystals or surfaces, under periodic boundary conditions (PBCs). In such calculations, when the simulation cell has non-zero charge, electrical neutrality has to be imposed, and this is often done via a uniform background charge of opposite sign ("jellium"). This artificial neutralization does not occur in reality, where a different mechanism is followed as in the example of a charged electrode in electrolyte solution, where the surrounding electrolyte screens the local charge at the interface. The neutralizing effect of the surrounding electrolyte can be incorporated within a hybrid quantum-continuum model based on a modified Poisson-Boltzmann equation, where the concentrations of electrolyte ions are modified to achieve electroneutrality. Among the infinite possible ways of modifying the electrolyte charge, we propose here a physically optimal solution, which minimizes the deviation of concentrations of electrolyte ions from those in open boundary conditions (OBCs). This principle of correspondence of PBCs with OBCs leads to the correct concentration profiles of electrolyte ions, and electroneutrality within the simulation cell and in the bulk electrolyte is maintained simultaneously, as observed in experiments. This approach, which we call the Neutralization by Electrolyte Concentration Shift (NECS), is implemented in our electrolyte model in the Order-N Electronic Total Energy Package (ONETEP) linear-scaling DFT code, which makes use of a bespoke highly parallel Poisson-Boltzmann solver, DL_MG. We further propose another neutralization scheme ("accessible jellium"), which is a simplification of NECS. We demonstrate and compare the different neutralization schemes on several examples.
密度泛函理论(DFT)常用于在周期性边界条件(PBC)下模拟诸如无限晶体或表面等扩展材料。在这类计算中,当模拟单元具有非零电荷时,必须强制实现电中性,这通常通过相反符号的均匀背景电荷(“凝胶模型”)来完成。这种人为的中和在现实中并不会发生,在现实中遵循的是不同的机制,例如在电解质溶液中带电电极的例子中,周围的电解质会屏蔽界面处的局部电荷。周围电解质的中和作用可以纳入基于修正泊松 - 玻尔兹曼方程的混合量子 - 连续介质模型中,其中电解质离子的浓度会被修正以实现电中性。在无限多种修正电解质电荷的方式中,我们在此提出一种物理上最优的解决方案,它能使电解质离子浓度与开放边界条件(OBC)下的浓度偏差最小化。这种PBC与OBC对应的原理能得出正确的电解质离子浓度分布,并且模拟单元内和本体电解质中的电中性能同时得以维持,正如实验中所观察到的那样。我们将这种方法称为“通过电解质浓度偏移实现中和”(NECS),它在我们的电解质模型中被实现于线性标度DFT代码Order - N电子总能量包(ONETEP)中,该代码使用了定制的高度并行泊松 - 玻尔兹曼求解器DL_MG。我们还提出了另一种中和方案(“可及凝胶模型”),它是NECS的一种简化形式。我们在几个例子中展示并比较了不同的中和方案。