Suppr超能文献

为预测电解质的集体性质建立第一性原理框架。

Toward a First-Principles Framework for Predicting Collective Properties of Electrolytes.

机构信息

School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia.

Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States.

出版信息

Acc Chem Res. 2021 Jul 6;54(13):2833-2843. doi: 10.1021/acs.accounts.1c00107. Epub 2021 Jun 17.

Abstract

Given the universal importance of electrolyte solutions, it is natural to expect that we have a nearly complete understanding of the fundamental properties of these solutions (e.g., the chemical potential) and that we can therefore explain, predict, and control the phenomena occurring in them. In fact, reality falls short of these expectations. But, recent advances in the simulation and modeling of electrolyte solutions indicate that it should soon be possible to make progress toward these goals. In this Account, we will discuss the use of first-principles interaction potentials based in quantum mechanics (QM) to enhance our understanding of electrolyte solutions. Specifically, we will focus on the use of quantum density functional theory (DFT) combined with molecular dynamics simulation (DFT-MD) as the foundation for our approach. The overarching concept is to understand and accurately reproduce the balance between local or short-ranged (SR) structural details and long-range (LR) correlations, allowing the prediction of the thermodynamics of both single ions in solution as well as the collective interactions characterized by activity/osmotic coefficients. In doing so, relevant collective motions and driving forces characterized by chemical potentials can be determined.In this Account, we will make the case that understanding electrolyte solutions requires a faithful QM representation of the SR nature of the ion-ion, ion-water, and water-water interactions. However, the number of molecules that is required for collective behavior makes the direct application of high-level QM methods that contain the best SR physics untenable, making methods that balance accuracy and efficiency a goal. Alternatives such as continuum solvent models (CSMs) and empirically based classical molecular dynamics have been extensively employed to resolve this problem but without yet overcoming the fundamental issue of SR accuracy. We will demonstrate that accurately describing the SR interaction is imperative for predicting intrinsic properties, namely, at infinite dilution, and collective properties of electrolyte solutions.DFT has played an important role in our understanding of condensed phase systems, e.g., bulk liquid water, the air-water interface, ions in bulk, and at the air-water interface. This approach holds huge promise to provide benchmark calculations of electrolyte solution properties that will allow for the development and improvement of more efficient methods, as well as an enhanced understanding of fundamental phenomena. However, the standard protocol using the generalized gradient approximation with van der Waals (vdW) correction requires improvement in order to achieve a high level of quantitative accuracy. Simply simulating with higher level DFT functionals may not be the best route considering the significant computational cost. Alternative methods of incorporating information from higher levels of QM should be explored; e.g., using force matching techniques on small clusters, where high level benchmark calculations are possible, to develop ideal correction terms to the DFT functional is a promising possibility. We argue that DFT with statistical mechanics is becoming an increasingly useful framework enabling the prediction of collective electrolyte properties.

摘要

鉴于电解质溶液的普遍重要性,人们自然期望对这些溶液的基本性质(例如化学势)有近乎完整的了解,并且因此能够解释、预测和控制它们中发生的现象。但事实上,现实情况并不符合这些期望。然而,电解质溶液模拟和建模方面的最新进展表明,朝着这些目标取得进展应该很快成为可能。在本专题介绍中,我们将讨论使用基于量子力学(QM)的第一性原理相互作用势来增强我们对电解质溶液的理解。具体而言,我们将重点介绍使用量子密度泛函理论(DFT)与分子动力学模拟(DFT-MD)作为我们方法的基础。总体概念是理解并准确再现局部或短程(SR)结构细节与长程(LR)相关性之间的平衡,从而能够预测溶液中单离子的热力学以及以活度/渗透压系数为特征的集体相互作用。通过这样做,可以确定由化学势表征的相关集体运动和驱动力。在本专题介绍中,我们将提出这样一种观点,即理解电解质溶液需要对离子-离子、离子-水和水-水相互作用的 SR 性质进行忠实的 QM 表示。然而,对于集体行为所需的分子数量使得包含最佳 SR 物理的高级 QM 方法的直接应用变得不可行,这使得平衡准确性和效率的方法成为一个目标。已经广泛采用了替代方法,例如连续溶剂模型(CSM)和基于经验的经典分子动力学,以解决这个问题,但仍然没有克服 SR 准确性的根本问题。我们将证明,准确描述 SR 相互作用对于预测电解质溶液的固有性质(即在无限稀释时)和集体性质至关重要。DFT 在我们对凝聚相系统的理解中发挥了重要作用,例如,液体水、气-水界面、体相中的离子以及气-水界面上的离子。这种方法有望为电解质溶液性质的基准计算提供巨大的支持,从而促进更有效方法的开发和改进,并增强对基本现象的理解。然而,为了达到较高的定量准确性,使用带有范德华(vdW)修正的广义梯度近似的标准协议需要改进。仅仅使用更高水平的 DFT 泛函进行模拟可能不是最佳途径,因为这需要付出巨大的计算成本。应该探索从更高水平的 QM 中获取信息的替代方法;例如,在小团簇上使用力匹配技术,在那里可以进行高级基准计算,从而开发出对 DFT 泛函的理想校正项,这是一种很有前途的可能性。我们认为,统计力学与 DFT 正在成为一个越来越有用的框架,能够预测电解质的集体性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验