Suppr超能文献

使用加权基因共表达网络分析鉴定与阿尔茨海默病相关的枢纽基因及其他基因

Identification of and Other Hub Genes Associated With Alzheimer Disease Using Weighted Gene Coexpression Network Analysis.

作者信息

Zhu Min, Jia Longfei, Li Fangyu, Jia Jianping

机构信息

Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.

Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.

出版信息

Front Genet. 2020 Aug 28;11:981. doi: 10.3389/fgene.2020.00981. eCollection 2020.

Abstract

Alzheimer disease (AD) is the most common cause of dementia and creates a significant burden on society. As a result, the investigation of hub genes for the discovery of potential therapeutic targets and candidate biomarkers is warranted. In this study, we used the ComBat method to merge three gene expression datasets of AD from the Gene Expression Omnibus (GEO). During combined analysis, we identified 850 differentially expressed genes (DEGs) from the temporal cortex of AD and cognitively normal (CN) samples. We performed weighted gene coexpression network analysis to build gene coexpression networks incorporating these DEGs to identify key modules and hub genes. We found one module most strongly correlated with AD onset as the key module and 19 hub genes in the key module that were down-regulated in AD brains. According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, DEGs were mostly enriched in synapse function, and genes in the key module were mostly related to learning and memory. We selected five little-studied genes, , , , , and , to validate their expression in AD mouse model by performing quantitative real-time polymerase chain reaction. We found that all of them were down-regulated in cortices of 8-month 5xFAD mice compared to those of wild-type mice. We then further investigated their correlations with β-secretase activity and Aβ42 levels in AD samples of different Braak stages. We found that all five hub genes had significant negative associations with β-secretase activity and that and had significant negative associations with Aβ42 levels. We tested the differential expressions of the five hub genes in two AD GEO datasets from the blood and found that was significantly up-regulated in patients with both mild cognitive impairment (MCI) and AD and was able to differentiate MCI and AD from CN in the two datasets. In conclusion, these five novel vulnerable genes were involved in AD progression, and KIAA0513 was a promising candidate biomarker for early diagnosis of AD.

摘要

阿尔茨海默病(AD)是痴呆症最常见的病因,给社会带来了巨大负担。因此,有必要研究核心基因以发现潜在的治疗靶点和候选生物标志物。在本研究中,我们使用ComBat方法合并了来自基因表达综合数据库(GEO)的三个AD基因表达数据集。在联合分析过程中,我们从AD的颞叶皮质和认知正常(CN)样本中鉴定出850个差异表达基因(DEG)。我们进行了加权基因共表达网络分析,以构建包含这些DEG的基因共表达网络,从而识别关键模块和核心基因。我们发现一个与AD发病最密切相关的模块为关键模块,且该关键模块中的19个核心基因在AD大脑中表达下调。根据基因本体论和京都基因与基因组百科全书分析,DEG大多富集于突触功能,关键模块中的基因大多与学习和记忆相关。我们选择了五个研究较少的基因, 、 、 、 和 ,通过定量实时聚合酶链反应在AD小鼠模型中验证它们的表达。我们发现,与野生型小鼠相比,所有这些基因在8个月大的5xFAD小鼠的皮质中均表达下调。然后,我们进一步研究了它们与不同Braak阶段AD样本中β-分泌酶活性和Aβ42水平的相关性。我们发现所有五个核心基因与β-分泌酶活性均呈显著负相关,且 和 与Aβ42水平呈显著负相关。我们在两个来自血液的AD GEO数据集中测试了这五个核心基因的差异表达,发现 在轻度认知障碍(MCI)和AD患者中均显著上调,并且能够在这两个数据集中将MCI和AD与CN区分开来。总之,这五个新的易损基因参与了AD的进展,而KIAA0513是AD早期诊断的一个有前景的候选生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9094/7483929/94056c11e488/fgene-11-00981-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验