Suppr超能文献

酿酒酵母分批发酵过程中的乙醇生产:糖酵解酶和内部pH值的变化

Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH.

作者信息

Dombek K M, Ingram L O

出版信息

Appl Environ Microbiol. 1987 Jun;53(6):1286-91. doi: 10.1128/aem.53.6.1286-1291.1987.

Abstract

During batch fermentation, the rate of ethanol production per milligram of cell protein is maximal for a brief period early in this process and declines progressively as ethanol accumulates in the surrounding broth. Our studies demonstrate that the removal of this accumulated ethanol does not immediately restore fermentative activity, and they provide evidence that the decline in metabolic rate is due to physiological changes (including possible ethanol damage) rather than to the presence of ethanol. Several potential causes for the decline in fermentative activity have been investigated. Viability remained at or above 90%, internal pH remained near neutrality, and the specific activities of the glycolytic and alcohologenic enzymes (measured in vitro) remained high throughout batch fermentation. None of these factors appears to be causally related to the fall in fermentative activity during batch fermentation.

摘要

在分批发酵过程中,每毫克细胞蛋白的乙醇产生速率在该过程早期的短时间内达到最大值,并随着乙醇在周围发酵液中的积累而逐渐下降。我们的研究表明,去除这种积累的乙醇并不能立即恢复发酵活性,并且研究提供了证据表明代谢速率的下降是由于生理变化(包括可能的乙醇损伤)而非乙醇的存在。已经研究了发酵活性下降的几个潜在原因。在整个分批发酵过程中,细胞活力保持在90%或以上,内部pH值保持接近中性,糖酵解酶和产醇酶的比活性(体外测量)保持较高。这些因素似乎都与分批发酵过程中发酵活性的下降没有因果关系。

相似文献

1
Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH.
Appl Environ Microbiol. 1987 Jun;53(6):1286-91. doi: 10.1128/aem.53.6.1286-1291.1987.
2
Glycolytic flux in Zymomonas mobilis: enzyme and metabolite levels during batch fermentation.
J Bacteriol. 1987 Aug;169(8):3726-36. doi: 10.1128/jb.169.8.3726-3736.1987.
4
Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation.
Appl Environ Microbiol. 1986 Nov;52(5):975-81. doi: 10.1128/aem.52.5.975-981.1986.
6
pH dependencies of glycolytic enzymes of yeast under in vivo-like assay conditions.
FEBS J. 2022 Oct;289(19):6021-6037. doi: 10.1111/febs.16459. Epub 2022 May 11.
10
Direct fermentation of potato starch to ethanol by cocultures of Aspergillus niger and Saccharomyces cerevisiae.
Appl Environ Microbiol. 1986 Nov;52(5):1055-9. doi: 10.1128/aem.52.5.1055-1059.1986.

引用本文的文献

1
Decreasing mitochondrial RNA polymerase activity reverses biased inheritance of hypersuppressive mtDNA.
PLoS Genet. 2021 Oct 19;17(10):e1009808. doi: 10.1371/journal.pgen.1009808. eCollection 2021 Oct.
3
Integrating Cellular and Bioprocess Engineering in the Non-Conventional Yeast for Biodiesel Production: A Review.
Front Bioeng Biotechnol. 2017 Oct 17;5:65. doi: 10.3389/fbioe.2017.00065. eCollection 2017.
4
Recent trends in bioethanol production from food processing byproducts.
J Ind Microbiol Biotechnol. 2016 Nov;43(11):1593-1609. doi: 10.1007/s10295-016-1821-z. Epub 2016 Aug 26.
5
Response Surface Optimization of Bioethanol Production from Sugarcane Molasses by Pichia veronae Strain HSC-22.
Biotechnol Res Int. 2015;2015:905792. doi: 10.1155/2015/905792. Epub 2015 Dec 8.
9
Ion-implanted polytetrafluoroethylene enhances Saccharomyces cerevisiae biofilm formation for improved immobilization.
J R Soc Interface. 2012 Nov 7;9(76):2923-35. doi: 10.1098/rsif.2012.0347. Epub 2012 Jun 13.
10
Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?
Biol Direct. 2012 Jan 20;7:4. doi: 10.1186/1745-6150-7-4.

本文引用的文献

1
High-gravity brewing: effects of nutrition on yeast composition, fermentative ability, and alcohol production.
Appl Environ Microbiol. 1984 Sep;48(3):639-46. doi: 10.1128/aem.48.3.639-646.1984.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
4
Effect of sterol side chains on growth and membrane fatty acid composition of Saccharomyces cerevisiae.
J Bacteriol. 1980 Oct;144(1):124-30. doi: 10.1128/jb.144.1.124-130.1980.
5
Effects of unsaturated fatty acid deprivation on neutral lipid synthesis in Saccharomyces cerevisiae.
J Bacteriol. 1982 Nov;152(2):747-56. doi: 10.1128/jb.152.2.747-756.1982.
6
Effects of alcohols on micro-organisms.
Adv Microb Physiol. 1984;25:253-300. doi: 10.1016/s0065-2911(08)60294-5.
7
Saccharomyces cerevisiae does not accumulate ethanol against a concentration gradient.
J Bacteriol. 1984 Dec;160(3):874-8. doi: 10.1128/jb.160.3.874-878.1984.
8
Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae.
Biochim Biophys Acta. 1984 Jul 11;774(1):43-8. doi: 10.1016/0005-2736(84)90272-4.
9
A kinetic study of glycolytic enzyme synthesis in yeast.
J Biol Chem. 1971 Jan 25;246(2):475-88.
10
Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation.
Appl Environ Microbiol. 1986 Nov;52(5):975-81. doi: 10.1128/aem.52.5.975-981.1986.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验