Suppr超能文献

基于数据驱动的帕金森病客观分级改善模型。

Data-Driven Models for Objective Grading Improvement of Parkinson's Disease.

机构信息

The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio, 34, 56025, Pontedera, Italy.

Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.

出版信息

Ann Biomed Eng. 2020 Dec;48(12):2976-2987. doi: 10.1007/s10439-020-02628-4. Epub 2020 Oct 1.

Abstract

Parkinson's disease (PD) is a progressive disorder of the central nervous system that causes motor dysfunctions in affected patients. Objective assessment of symptoms can support neurologists in fine evaluations, improving patients' quality of care. Herein, this study aimed to develop data-driven models based on regression algorithms to investigate the potential of kinematic features to predict PD severity levels. Sixty-four patients with PD (PwPD) and 50 healthy subjects of control (HC) were asked to perform 13 motor tasks from the MDS-UPDRS III while wearing wearable inertial sensors. Simultaneously, the clinician provided the evaluation of the tasks based on the MDS-UPDRS scores. One hundred-ninety kinematic features were extracted from the inertial motor data. Data processing and statistical analysis identified a set of parameters able to distinguish between HC and PwPD. Then, multiple feature selection methods allowed selecting the best subset of parameters for obtaining the greatest accuracy when used as input for several predicting regression algorithms. The maximum correlation coefficient, equal to 0.814, was obtained with the adaptive neuro-fuzzy inference system (ANFIS). Therefore, this predictive model could be useful as a decision support system for a reliable objective assessment of PD severity levels based on motion performance, improving patients monitoring over time.

摘要

帕金森病(PD)是一种中枢神经系统的进行性疾病,会导致患者出现运动功能障碍。对症状进行客观评估可以帮助神经科医生进行精细评估,提高患者的护理质量。本研究旨在基于回归算法开发数据驱动模型,以研究运动学特征预测 PD 严重程度的潜力。研究招募了 64 名 PD 患者(PwPD)和 50 名健康对照者(HC),让他们佩戴可穿戴惯性传感器完成 13 项 MDS-UPDRS III 运动任务。同时,临床医生根据 MDS-UPDRS 评分对任务进行评估。从惯性运动数据中提取了 190 个运动学特征。数据处理和统计分析确定了一组能够区分 HC 和 PwPD 的参数。然后,使用多种特征选择方法选择最佳参数子集,以便在将其用作多个预测回归算法的输入时获得最高精度。自适应神经模糊推理系统(ANFIS)的最大相关系数为 0.814。因此,该预测模型可作为一种决策支持系统,基于运动表现对 PD 严重程度进行可靠的客观评估,随着时间的推移改善患者的监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a40/7723941/83f1fe150f6d/10439_2020_2628_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验