Shuqair Mustafa, Jimenez-Shahed Joohi, Ghoraani Behnaz
Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Bioengineering (Basel). 2024 Jul 7;11(7):689. doi: 10.3390/bioengineering11070689.
The Unified Parkinson's Disease Rating Scale (UPDRS) is used to recognize patients with Parkinson's disease (PD) and rate its severity. The rating is crucial for disease progression monitoring and treatment adjustment. This study aims to advance the capabilities of PD management by developing an innovative framework that integrates deep learning with wearable sensor technology to enhance the precision of UPDRS assessments. We introduce a series of deep learning models to estimate UPDRS Part III scores, utilizing motion data from wearable sensors. Our approach leverages a novel Multi-shared-task Self-supervised Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) framework that processes raw gyroscope signals and their spectrogram representations. This technique aims to refine the estimation accuracy of PD severity during naturalistic human activities. Utilizing 526 min of data from 24 PD patients engaged in everyday activities, our methodology demonstrates a strong correlation of 0.89 between estimated and clinically assessed UPDRS-III scores. This model outperforms the benchmark set by single and multichannel CNN, LSTM, and CNN-LSTM models and establishes a new standard in UPDRS-III score estimation for free-body movements compared to recent state-of-the-art methods. These results signify a substantial step forward in bioengineering applications for PD monitoring, providing a robust framework for reliable and continuous assessment of PD symptoms in daily living settings.
统一帕金森病评定量表(UPDRS)用于识别帕金森病(PD)患者并评估其严重程度。该评定对于疾病进展监测和治疗调整至关重要。本研究旨在通过开发一种创新框架来提升PD管理能力,该框架将深度学习与可穿戴传感器技术相结合,以提高UPDRS评估的精度。我们引入了一系列深度学习模型,利用可穿戴传感器的运动数据来估计UPDRS第三部分的分数。我们的方法利用了一种新颖的多共享任务自监督卷积神经网络-长短期记忆(CNN-LSTM)框架,该框架处理原始陀螺仪信号及其频谱图表示。这项技术旨在提高在自然人类活动期间PD严重程度的估计准确性。利用来自24名参与日常活动的PD患者的526分钟数据,我们的方法在估计的和临床评估的UPDRS-III分数之间显示出0.89的强相关性。该模型优于单通道和多通道CNN、LSTM以及CNN-LSTM模型设定的基准,并且与最近的最先进方法相比,在自由身体运动的UPDRS-III分数估计方面建立了新的标准。这些结果标志着在用于PD监测的生物工程应用方面向前迈出了重要一步,为在日常生活环境中可靠且持续地评估PD症状提供了一个强大的框架。