Chen Dongliang, Xu Zhenmiao, Chen Wei, Chen Guangliang, Huang Jun, Song Changsheng, Zheng Kun, Zhang Zhaoxia, Hu Xianpeng, Choi Ho-Suk, Ostrikov Kostya Ken
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
School of Physics and Electronic Information, Gannan Normal University, Ganzhou, 341000, China.
Small. 2020 Oct;16(43):e2004843. doi: 10.1002/smll.202004843. Epub 2020 Oct 1.
Bimetallic phosphate electrocatalysts on carbon-cloth support are among the most promising industry-relevant solutions for electrocatalytic hydrogen production. To address the persistent issue of hetero-phase interfacing on carbon support while ensuring high activity and stability, a low-cost, high-performance hydrogen evolution reaction (HER) electrocatalyst is developed. Bi-phase Ni P -Ni Nb P nanocrystals with rich heterointerfaces and phase edges are successfully fabricated on carbon cloth (CC), which is enabled by intentional defect creation by atmospheric pressure dielectric barrier discharge (DBD) plasma (PCC). The obtained Ni P -Ni Nb P /PCC electrocatalyst exhibits excellent HER performance, heralded by the low overpotentials of 81 and 287 mV for delivering current densities of 10 (j ) and 500 (j ) mA cm , respectively. Meanwhile, the Ni P -Ni Nb P /PCC maintains spectacular catalytic activity at high current density region (>j ), which outperformed the industry-relevant benchmark Pt/C/PCC catalyst. The catalyst grown on the plasma-treated support shows remarkably longer operation and ultra-stable electrocatalytic characteristics over 100 h continuous operation. Ab initio numerical simulations reveal that Ni atoms exposed in the heterointerfaces act as the main catalytically active centers for HER.
碳布负载的双金属磷酸盐电催化剂是用于电催化制氢的最具前景的与工业相关的解决方案之一。为了解决碳载体上异相界面的持续问题,同时确保高活性和稳定性,开发了一种低成本、高性能的析氢反应(HER)电催化剂。通过大气压介质阻挡放电(DBD)等离子体(PCC)有意制造缺陷,成功地在碳布(CC)上制备了具有丰富异质界面和相边缘的双相NiP-NiNbP纳米晶体。所制备的NiP-NiNbP/PCC电催化剂表现出优异的HER性能,在电流密度分别为10(j)和500(j)mA cm时,过电位低至81和287 mV。同时,NiP-NiNbP/PCC在高电流密度区域(>j)保持了出色的催化活性,优于与工业相关的基准Pt/C/PCC催化剂。在经过等离子体处理的载体上生长的催化剂在连续运行100 h以上时显示出显著更长的运行时间和超稳定的电催化特性。从头算数值模拟表明,暴露在异质界面中的Ni原子是HER的主要催化活性中心。