Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States.
Inorg Chem. 2020 Oct 19;59(20):15074-15087. doi: 10.1021/acs.inorgchem.0c02040. Epub 2020 Oct 2.
Iron oxide nanocrystals have the potential for use in a wide variety of applications if we can finely control and tune the diverse structural attributes that lead to specific, desired properties. At the high temperatures utilized for thermal decomposition based syntheses, commonly used Fe(III) alkylcarboxylate precursors are inadvertently reduced and produce wüstite (FeO), which is paramagnetic, as opposed to the desired ferrimagnetic spinel phases of magnetite (FeO) and maghemite (γ-FeO). To circumvent this issue, we carried out syntheses at lower temperatures (∼230 °C) using an esterification-mediated approach. Under these conditions, formation of the FeO phase can be avoided. However, we found that the precursor oxidation state and ligation had a surprisingly strong influence on the morphologies of the resulting nanocrystals. To investigate the cause of these morphological effects, we carried out analogous nanocrystal syntheses with a series of precursors. The use of Fe(III) oleate precursors yielded highly crystalline, largely twin-free nanocrystals; however, small amounts of acetylacetonate ligation yielded nanocrystals with morphologies characteristic of twin defects. During synthesis at 230 °C, the Fe(III) oleate precursor is partially reduced, providing sufficient quantities of Fe(II) that are needed to grow the FeO nanocrystals (wherein one-third of the iron atoms are in the Fe(II) state) without twinning. Our investigations suggest that the acetylacetonate ligands prevent reduction of Fe(III) to Fe(II), leading to twinned structures during synthesis. Harnessing this insight, we identified conditions to predictably and continuously grow octahedral, spinel nanocrystals as well as conditions to synthesize highly twinned nanocrystals. These findings also help explain observations in the thermal decomposition synthesis literature which suggest that iron oxide nanocrystals produced from Fe(acac) are less prone to FeO contamination in comparison to those produced from Fe(III) alkylcarboxylates.
如果我们能够精细地控制和调整导致特定所需性质的各种结构属性,那么氧化铁纳米晶体就有可能在各种应用中得到应用。在热分解基合成中使用的高温下,常用的 Fe(III) 烷羧酸酯前体被无意中还原,并产生反铁磁性的 wüstite (FeO),而不是所需的磁铁矿 (FeO) 和磁赤铁矿 (γ-FeO) 的亚铁磁性尖晶石相。为了解决这个问题,我们在较低的温度(约 230°C)下使用酯化介导的方法进行合成。在这些条件下,可以避免形成 FeO 相。然而,我们发现前体的氧化态和配位对所得纳米晶体的形态有惊人的强烈影响。为了研究这些形态效应的原因,我们用一系列前体制备了类似的纳米晶体合成物。使用 Fe(III) 油酸盐前体得到了高度结晶、基本上无孪晶的纳米晶体;然而,少量乙酰丙酮配位导致具有孪晶缺陷特征的纳米晶体形态。在 230°C 下合成时,Fe(III) 油酸盐前体部分还原,提供了足够数量的 Fe(II),这些 Fe(II) 是生长 FeO 纳米晶体(其中三分之一的铁原子处于 Fe(II) 状态)所必需的,而无需孪晶。我们的研究表明,乙酰丙酮配体阻止了 Fe(III) 还原为 Fe(II),导致合成过程中形成孪晶结构。利用这一见解,我们确定了可预测和连续生长八面体尖晶石纳米晶体的条件,以及合成高度孪晶纳米晶体的条件。这些发现还有助于解释热分解合成文献中的观察结果,表明与 Fe(III) 烷羧酸酯相比,由 Fe(acac) 产生的氧化铁纳米晶体不易受到 FeO 污染。