Suppr超能文献

动物携带的测量工具可实现对蓝鲸洄游的声学探测。

Animal-Borne Metrics Enable Acoustic Detection of Blue Whale Migration.

机构信息

Hopkins Marine Station, Department of Biology, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA 93950, USA.

Hopkins Marine Station, Department of Biology, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA 93950, USA; Cascadia Research Collective, 218 1/2 W 4(th) Ave, Olympia, WA 98501, USA.

出版信息

Curr Biol. 2020 Dec 7;30(23):4773-4779.e3. doi: 10.1016/j.cub.2020.08.105. Epub 2020 Oct 1.

Abstract

Linking individual and population scales is fundamental to many concepts in ecology [1], including migration [2, 3]. This behavior is a critical [4] yet increasingly threatened [5] part of the life history of diverse organisms. Research on migratory behavior is constrained by observational scale [2], limiting ecological understanding and precise management of migratory populations in expansive, inaccessible marine ecosystems [6]. This knowledge gap is magnified for dispersed oceanic predators such as endangered blue whales (Balaenoptera musculus). As capital breeders, blue whales migrate vast distances annually between foraging and breeding grounds, and their population fitness depends on synchrony of migration with phenology of prey populations [7, 8]. Despite previous studies of individual-level blue whale vocal behavior via bio-logging [9, 10] and population-level acoustic presence via passive acoustic monitoring [11], detection of the life history transition from foraging to migration remains challenging. Here, we integrate direct high-resolution measures of individual behavior and continuous broad-scale acoustic monitoring of regional song production (Figure 1A) to identify an acoustic signature of the transition from foraging to migration in the Northeast Pacific population. We find that foraging blue whales sing primarily at night, whereas migratory whales sing primarily during the day. The ability to acoustically detect population-level transitions in behavior provides a tool to more comprehensively study the life history, fitness, and plasticity of population behavior in a dispersed, capital breeding population. Real-time detection of this behavioral signal can also inform dynamic management efforts [12] to mitigate anthropogenic threats to this endangered population [13, 14]).

摘要

将个体和种群尺度联系起来是生态学中许多概念的基础,包括迁移[2,3]。这种行为是生物多样性生命史的关键[4]但越来越受到威胁[5]的一部分。对迁移行为的研究受到观测尺度[2]的限制,这限制了对广阔、难以进入的海洋生态系统[6]中迁移种群的生态理解和精确管理。对于分散的海洋捕食者,如濒危的蓝鲸(Balaenoptera musculus)来说,这种知识差距更为明显。作为主要繁殖者,蓝鲸每年在觅食地和繁殖地之间迁徙很远的距离,它们的种群适应性取决于迁徙与猎物种群物候的同步性[7,8]。尽管之前通过生物标记[9,10]研究了个体水平的蓝鲸发声行为,通过被动声学监测[11]研究了种群水平的声学存在,但仍然难以检测到从觅食到迁徙的生命史转变。在这里,我们整合了个体行为的直接高分辨率测量和区域歌唱生产的连续广泛声监测(图 1A),以确定东北太平洋种群从觅食到迁徙的转变的声学特征。我们发现觅食的蓝鲸主要在夜间唱歌,而迁徙的鲸鱼主要在白天唱歌。能够声学检测到行为的种群水平转变为研究分散的、主要繁殖的种群的生命史、适应性和行为可塑性提供了一种工具。实时检测这种行为信号也可以为动态管理工作提供信息[12],以减轻这种濒危种群面临的人为威胁[13,14]。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验