Suppr超能文献

数千张癌症基因组图谱揭示了不同类别的复杂结构变异。

Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs.

机构信息

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA.

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA; Tri-institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10021, USA.

出版信息

Cell. 2020 Oct 1;183(1):197-210.e32. doi: 10.1016/j.cell.2020.08.006.

Abstract

Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.

摘要

癌症基因组通常携带有数百个体细胞 DNA 重排接头,其中许多接头不能轻易归类为简单(例如,缺失)或复杂(例如,染色体重排)结构变体类别。应用一种新的基因组图计算范例来分析 2778 个肿瘤全基因组序列中接头拷贝数 (JCN) 的拓扑结构,我们发现了三种新的复杂重排现象:pyrgo、rigma 和 tyfonas。pyrgo 是与早期复制区域、超级增强子和乳腺癌或卵巢癌相关的低 JCN 重复的“塔”。rigma 由富含晚期复制脆性位点和胃肠道癌的低 JCN 缺失的“峡谷”组成。tyfonas 是与表达蛋白编码融合、断裂端超突变以及肢端而不是皮肤黑色素瘤相关的高 JCN 接头和回折反转的“台风”。根据基于基因组图衍生特征对肿瘤进行聚类,确定了与 DNA 修复缺陷和预后不良相关的亚组。

相似文献

1
Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs.
Cell. 2020 Oct 1;183(1):197-210.e32. doi: 10.1016/j.cell.2020.08.006.
2
Chromothripsis during telomere crisis is independent of NHEJ, and consistent with a replicative origin.
Genome Res. 2019 May;29(5):737-749. doi: 10.1101/gr.240705.118. Epub 2019 Mar 14.
4
Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer.
Cell. 2018 Jul 26;174(3):758-769.e9. doi: 10.1016/j.cell.2018.06.039. Epub 2018 Jul 19.
5
Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing.
Nat Genet. 2020 Mar;52(3):331-341. doi: 10.1038/s41588-019-0576-7. Epub 2020 Feb 5.
6
Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements.
Nat Genet. 2019 Apr;51(4):705-715. doi: 10.1038/s41588-019-0360-8. Epub 2019 Mar 4.
7
Patterns of somatic structural variation in human cancer genomes.
Nature. 2020 Feb;578(7793):112-121. doi: 10.1038/s41586-019-1913-9. Epub 2020 Feb 5.
8
Toward Recovering Allele-specific Cancer Genome Graphs.
J Comput Biol. 2018 Jul;25(7):624-636. doi: 10.1089/cmb.2018.0022. Epub 2018 Apr 16.
10
A cell-based model system links chromothripsis with hyperploidy.
Mol Syst Biol. 2015 Sep 28;11(9):828. doi: 10.15252/msb.20156505.

引用本文的文献

2
Chromoanagenesis and Beyond: Catastrophic Events Shaping the Genome.
Methods Mol Biol. 2025;2968:65-73. doi: 10.1007/978-1-0716-4750-9_4.
3
Chromothripsis.
Methods Mol Biol. 2025;2968:3-33. doi: 10.1007/978-1-0716-4750-9_1.
4
Modelling Acral Melanoma in Admixed Brazilians Uncovers Genomic Drivers and Targetable Pathways.
medRxiv. 2025 Aug 13:2025.08.08.25332963. doi: 10.1101/2025.08.08.25332963.
5
Telomere Crisis Shapes Cancer Evolution.
Cold Spring Harb Perspect Biol. 2025 Aug 11. doi: 10.1101/cshperspect.a041688.
6
Accurate, Scalable Structural Variant Genotyping in Complex Genomes at Population Scales.
Mol Biol Evol. 2025 Jul 30;42(8). doi: 10.1093/molbev/msaf180.
8
CCRR: a user-friendly platform for analyzing complex chromosomal rearrangements in tumors.
Bioinformatics. 2025 Jul 1;41(7). doi: 10.1093/bioinformatics/btaf386.

本文引用的文献

1
The repertoire of mutational signatures in human cancer.
Nature. 2020 Feb;578(7793):94-101. doi: 10.1038/s41586-020-1943-3. Epub 2020 Feb 5.
2
Patterns of somatic structural variation in human cancer genomes.
Nature. 2020 Feb;578(7793):112-121. doi: 10.1038/s41586-019-1913-9. Epub 2020 Feb 5.
3
Pan-cancer analysis of whole genomes.
Nature. 2020 Feb;578(7793):82-93. doi: 10.1038/s41586-020-1969-6. Epub 2020 Feb 5.
4
Pan-cancer whole-genome analyses of metastatic solid tumours.
Nature. 2019 Nov;575(7781):210-216. doi: 10.1038/s41586-019-1689-y. Epub 2019 Oct 23.
5
Improved detection of gene fusions by applying statistical methods reveals oncogenic RNA cancer drivers.
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15524-15533. doi: 10.1073/pnas.1900391116. Epub 2019 Jul 15.
6
Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma.
Cell. 2019 Jun 13;177(7):1842-1857.e21. doi: 10.1016/j.cell.2019.05.013. Epub 2019 May 30.
7
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Nature. 2019 May;569(7757):503-508. doi: 10.1038/s41586-019-1186-3. Epub 2019 May 8.
8
HumCFS: a database of fragile sites in human chromosomes.
BMC Genomics. 2019 Apr 18;19(Suppl 9):985. doi: 10.1186/s12864-018-5330-5.
9
The landscape of selection in 551 esophageal adenocarcinomas defines genomic biomarkers for the clinic.
Nat Genet. 2019 Mar;51(3):506-516. doi: 10.1038/s41588-018-0331-5. Epub 2019 Feb 4.
10
Transcription-dependent regulation of replication dynamics modulates genome stability.
Nat Struct Mol Biol. 2019 Jan;26(1):58-66. doi: 10.1038/s41594-018-0170-1. Epub 2018 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验