Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States.
Bioorg Med Chem. 2020 Nov 15;28(22):115710. doi: 10.1016/j.bmc.2020.115710. Epub 2020 Aug 30.
In two previous studies, we identified compound 1 as a moderate GroEL/ES inhibitor with weak to moderate antibacterial activity against Gram-positive and Gram-negative bacteria including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, and SM101 Escherichia coli (which has a compromised lipopolysaccharide biosynthetic pathway making bacteria more permeable to drugs). Extending from those studies, we developed two series of analogs with key substructures resembling those of known antibacterials, nitroxoline (hydroxyquinoline moiety) and nifuroxazide/nitrofurantoin (bis-cyclic-N-acylhydrazone scaffolds). Through biochemical and cell-based assays, we identified potent GroEL/ES inhibitors that selectively blocked E. faecium, S. aureus, and E. coli proliferation with low cytotoxicity to human colon and intestine cells in vitro. Initially, only the hydroxyquinoline-bearing analogs were found to be potent inhibitors in our GroEL/ES-mediated substrate refolding assays; however, subsequent testing in the presence of an E. coli nitroreductase (NfsB) in situ indicated that metabolites of the nitrofuran-bearing analogs were potent GroEL/ES inhibitor pro-drugs. Consequently, this study has identified a new target of nitrofuran-containing drugs, and is the first reported instance of such a unique class of GroEL/ES chaperonin inhibitors. The intriguing results presented herein provide impetus for expanded studies to validate inhibitor mechanisms and optimize this antibacterial class using the respective GroEL/ES chaperonin systems and nitroreductases from E. coli and the ESKAPE bacteria.
在之前的两项研究中,我们发现化合物 1 是一种中度的 GroEL/ES 抑制剂,对革兰氏阳性和革兰氏阴性细菌具有弱至中度的抗菌活性,包括枯草芽孢杆菌、耐甲氧西林金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌和 SM101 大肠杆菌(其脂多糖生物合成途径受损,使细菌对药物更易渗透)。从这些研究中,我们开发了两个类似物系列,其关键结构与已知的抗菌药物类似,包括硝呋太尔(羟喹啉部分)和硝呋妥因/呋喃妥因(双环-N-酰腙支架)。通过生化和基于细胞的测定,我们确定了有效的 GroEL/ES 抑制剂,这些抑制剂选择性地阻断粪肠球菌、金黄色葡萄球菌和大肠杆菌的增殖,同时对体外人结肠和肠细胞的细胞毒性较低。最初,只有含有羟喹啉的类似物在我们的 GroEL/ES 介导的底物重折叠测定中被发现是有效的抑制剂;然而,随后在含有大肠杆菌硝基还原酶(NfsB)的情况下进行测试表明,含有硝呋喃的类似物的代谢物是有效的 GroEL/ES 抑制剂前药。因此,本研究确定了含硝呋喃药物的一个新靶点,也是首次报道此类独特的 GroEL/ES 伴侣蛋白抑制剂。本文呈现的有趣结果为进一步研究提供了动力,以验证抑制剂的机制,并使用来自大肠杆菌的相应 GroEL/ES 伴侣蛋白系统和硝基还原酶优化该抗菌药物类别,以及 ESKAPE 细菌。