Suppr超能文献

情感脑机接口:选择有意义的性能测量指标。

Affective brain-computer interfaces: Choosing a meaningful performance measuring metric.

作者信息

Mowla Md Rakibul, Cano Rachael I, Dhuyvetter Katie J, Thompson David E

机构信息

Mike Wiegers Department of Electrical & Computer Engineering, Kansas State University, Manhattan, KS, 66506, USA.

Department of Mathematics, Kansas State University, Manhattan, KS, 66506, USA.

出版信息

Comput Biol Med. 2020 Nov;126:104001. doi: 10.1016/j.compbiomed.2020.104001. Epub 2020 Sep 24.

Abstract

Affective brain-computer interfaces are a relatively new area of research in affective computing. Estimation of affective states can improve human-computer interaction as well as improve the care of people with severe disabilities. To assess the effectiveness of EEG recordings for recognizing affective states, we used data collected in our lab as well as the publicly available DEAP database. We also reviewed the articles that used the DEAP database and found that a significant number of articles did not consider the presence of the class imbalance in the DEAP. Failing to consider class imbalance creates misleading results. Further, ignoring class imbalance makes the comparison of the results between studies using different datasets impossible, since different datasets will have different class imbalances. Class imbalance also shifts the chance level, hence it is vital to consider class bias while determining if the results are above chance. To properly account for the effect of class imbalance, we suggest the use of balanced accuracy as a performance metric, and its posterior distribution for computing credible intervals. For classification, we used features from the literature as well as theta beta-1 ratio. Results from DEAP and our data suggest that the beta band power, theta band power, and theta beta-1 ratio are better feature sets for classifying valence, arousal, and dominance, respectively.

摘要

情感脑机接口是情感计算中一个相对较新的研究领域。情感状态的估计可以改善人机交互,并改善对严重残疾人士的护理。为了评估脑电图记录在识别情感状态方面的有效性,我们使用了在我们实验室收集的数据以及公开可用的DEAP数据库。我们还回顾了使用DEAP数据库的文章,发现大量文章没有考虑DEAP中类不平衡的存在。不考虑类不平衡会产生误导性结果。此外,忽略类不平衡使得使用不同数据集的研究之间的结果比较变得不可能,因为不同的数据集会有不同的类不平衡。类不平衡也会改变机遇水平,因此在确定结果是否高于机遇时考虑类偏差至关重要。为了正确考虑类不平衡的影响,我们建议使用平衡准确率作为性能指标,并使用其后验分布来计算可信区间。对于分类,我们使用了文献中的特征以及theta beta-1比率。来自DEAP和我们的数据结果表明,β波段功率、θ波段功率和theta beta-1比率分别是用于分类效价、唤醒和优势度的更好特征集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验