Suppr超能文献

一种用于诊断痴呆症、阿尔茨海默病和轻度认知障碍的动态决策模型。

A dynamic decision model for diagnosis of dementia, Alzheimer's disease and Mild Cognitive Impairment.

作者信息

Carvalho Carolina M, Seixas Flávio L, Conci Aura, Muchaluat-Saade Débora C, Laks Jerson, Boechat Yolanda

机构信息

Institute of Computing, Fluminense Federal University, Rua Passo da Pátria, 156, Niterói, RJ, 24210-240, Brazil.

Center for Alzheimer's Disease and Related Disorders, Institute of Psychiatry, Federal University of Rio de Janeiro, Av. Venceslau Brás, 71, Rio de Janeiro, RJ, 22290-140, Brazil.

出版信息

Comput Biol Med. 2020 Nov;126:104010. doi: 10.1016/j.compbiomed.2020.104010. Epub 2020 Sep 22.

Abstract

CDSS (Clinical Decision Support System) is a domain within digital health that aims at supporting clinicians by suggesting the most probable diagnosis based on knowledge obtained from patient data. Usually, decision models used by current CDSS are static, i.e., they are not updated when new data are included, which could allow them to acquire new knowledge and enhance system accuracy. This paper proposes a dynamic decision model that automatically updates itself from classifier models using supervised machine learning algorithms. Our supervised learning process ranks several decision models using classifier performance measures, considering available patient data, filled by the health center, or local clinical guidelines. The decision model with the best performance is then selected to be used in our CDSS, which is designed for the diagnosis of D (Dementia), AD (Alzheimer's Disease), and MCI (Mild Cognitive Impairment). Patient datasets from CAD (Center for Alzheimer's Disease), at the Institute of Psychiatry of UFRJ (Federal University of Rio de Janeiro), and CRASI (Center of Reference in Attention to Health of the Elderly), at Antonio Pedro Hospital of UFF (Fluminense Federal University), are used. The main conclusion is that the proposed dynamic decision model, which offers the ability to be continuously refined with more recent diagnostic criteria or even personalized according to the local domain or clinical guidelines, provides an efficient alternative for diagnosis of Dementia, AD, and MCI.

摘要

临床决策支持系统(CDSS)是数字健康领域的一个范畴,旨在通过基于从患者数据中获取的知识来建议最可能的诊断,从而为临床医生提供支持。通常,当前CDSS所使用的决策模型是静态的,也就是说,当纳入新数据时它们不会更新,而新数据本可以使它们获取新知识并提高系统准确性。本文提出了一种动态决策模型,该模型使用监督式机器学习算法从分类器模型自动进行自我更新。我们的监督学习过程使用分类器性能指标对多个决策模型进行排序,同时考虑由健康中心提供的可用患者数据或当地临床指南。然后选择性能最佳的决策模型用于我们的CDSS,该CDSS旨在诊断痴呆症(D)、阿尔茨海默病(AD)和轻度认知障碍(MCI)。使用了来自里约热内卢联邦大学精神病学研究所的阿尔茨海默病中心(CAD)以及弗卢米嫩塞联邦大学安东尼奥·佩德罗医院的老年人健康关注参考中心(CRASI)的患者数据集。主要结论是,所提出的动态决策模型能够根据最新的诊断标准不断完善,甚至可以根据当地领域或临床指南进行个性化定制,为痴呆症、阿尔茨海默病和轻度认知障碍的诊断提供了一种有效的替代方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验