Guerrero J M, Martínez-Tomás R, Rincón M, Peraita H
Rafael Martínez-Tomás, Universidad Nacional de Educación a Distancia, Departamento de Inteligencia Artificial, Calle Juan del Rosal 16, 28040 Madrid, Spain, E-mail:
Methods Inf Med. 2016;55(1):42-9. doi: 10.3414/ME14-01-0071. Epub 2015 Apr 30.
Early detection of Alzheimer's disease (AD) has become one of the principal focuses of research in medicine, particularly when the disease is incipient or even prodromic, because treatments are more effective in these stages. Lexical-semantic-conceptual deficit (LSCD) in the oral definitions of semantic categories for basic objects is an important early indicator in the evaluation of the cognitive state of patients.
The objective of this research is to define an economic procedure for cognitive impairment (CI) diagnosis, which may be associated with early stages of AD, by analysing cognitive alterations affecting declarative semantic memory. Because of its low cost, it could be used for routine clinical evaluations or screenings, leading to more expensive and selective tests that confirm or rule out the disease accurately. It should necessarily be an explanatory procedure, which would allow us to study the evolution of the disease in relation to CI, the irregularities in different semantic categories, and other neurodegenerative diseases. On the basis of these requirements, we hypothesise that Bayesian networks (BNs) are the most appropriate tool for this purpose.
We have developed a BN for CI diagnosis in mild and moderate AD patients by analysing the oral production of semantic features. The BN causal model represents LSCD in certain semantic categories, both of living things (dog, pine, and apple) and non-living things (chair, car, and trousers), as symptoms of CI. The model structure, the qualitative part of the model, uses domain knowledge obtained from psychology experts and epidemiological studies. Further, the model parameters, the quantitative part of the model, are learnt automatically from epidemiological studies and Peraita and Grasso's linguistic corpus of oral definitions. This corpus was prepared with an incidental sampling and included the analysis of the oral linguistic production of 81 participants (42 cognitively healthy elderly people and 39 mild and moderate AD patients) from Madrid region's hospitals. Experienced neurologists diagnosed these cases following the National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA)'s Alzheimer's criteria, performing, among other explorations and tests, a minimum neuropsychological exploration that included the Mini-Mental State Examination test.
BN's classification performance is remarkable compared with other machine learning methods, achieving 91% accuracy and 94% precision in mild and moderate AD patients. Apart from this, the BN model facilitates the explanation of the reasoning process and the validation of the conclusions and allows the study of uncommon declarative semantic memory impairments.
Our method is able to analyse LSCD in a wide set of semantic categories throughout the progression of CI, being a valuable first screening method in AD diagnosis in its early stages. Because of its low cost, it can be used for routine clinical evaluations or screenings to detect AD in its early stages. Besides, due to its knowledge-based structure, it can be easily extended to provide an explanation of the diagnosis and to the study of other neurodegenerative diseases. Further, this is a key advantage of BNs over other machine learning methods with similar performance: it is a recognisable and explanatory model that allows one to study irregularities in different semantic categories.
阿尔茨海默病(AD)的早期检测已成为医学研究的主要重点之一,尤其是在疾病初期甚至前驱期,因为在这些阶段治疗效果更佳。基本物体语义类别的口头定义中的词汇 - 语义 - 概念缺陷(LSCD)是评估患者认知状态的重要早期指标。
本研究的目的是通过分析影响陈述性语义记忆的认知改变,定义一种用于认知障碍(CI)诊断的经济程序,该程序可能与AD的早期阶段相关。由于其成本低,可用于常规临床评估或筛查,从而引导进行更昂贵且更具针对性的测试,以准确确认或排除该疾病。它必须是一种解释性程序,使我们能够研究该疾病与CI相关的演变、不同语义类别中的异常情况以及其他神经退行性疾病。基于这些要求,我们假设贝叶斯网络(BNs)是实现此目的的最合适工具。
我们通过分析语义特征的口头表达,为轻度和中度AD患者开发了一个用于CI诊断的BN。BN因果模型将某些语义类别(包括生物类别(狗、松树和苹果)和非生物类别(椅子、汽车和裤子))中的LSCD表示为CI的症状。模型结构,即模型的定性部分,使用从心理学专家和流行病学研究中获得的领域知识。此外,模型参数,即模型的定量部分,是从流行病学研究以及佩拉伊塔和格拉索的口头定义语言语料库中自动学习得到的。该语料库通过偶然抽样编制,包括对来自马德里地区医院的81名参与者(42名认知健康的老年人和39名轻度和中度AD患者)的口头语言表达进行分析。经验丰富的神经科医生根据美国国立神经疾病和中风研究所/阿尔茨海默病及相关疾病协会(NINCDS - ADRDA)的阿尔茨海默病标准对这些病例进行诊断,除其他检查和测试外,还进行了包括简易精神状态检查表测试在内的最低限度神经心理学检查。
与其他机器学习方法相比,BN的分类性能显著,在轻度和中度AD患者中准确率达到91%,精确率达到94%。除此之外,BN模型便于对推理过程进行解释和对结论进行验证,并允许研究不常见的陈述性语义记忆障碍。
我们的方法能够在CI的整个进展过程中分析广泛语义类别中的LSCD,是AD早期诊断中有价值的初步筛查方法。由于其成本低,可用于常规临床评估或筛查以在早期阶段检测AD。此外,由于其基于知识的结构,它可以很容易地扩展以提供诊断解释并用于研究其他神经退行性疾病。此外,这是BN相对于其他具有类似性能的机器学习方法的一个关键优势:它是一个可识别且具有解释性的模型,允许人们研究不同语义类别中的异常情况。