Suppr超能文献

预测 HN 自适应放疗的剂量积累。

Predictive dose accumulation for HN adaptive radiotherapy.

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center New York, NY, United States of America.

出版信息

Phys Med Biol. 2020 Nov 27;65(23):235011. doi: 10.1088/1361-6560/abbdb8.

Abstract

During radiation therapy (RT) of head and neck (HN) cancer, the shape and volume of the parotid glands (PG) may change significantly, resulting in clinically relevant deviations of delivered dose from the planning dose. Early and accurate longitudinal prediction of PG anatomical changes during the RT can be valuable to inform decisions on plan adaptation. We developed a deep neural network for longitudinal predictions using the displacement fields (DFs) between the planning computed tomography (pCT) and weekly cone beam computed tomography (CBCT). Sixty-three HN patients treated with volumetric modulated arc were retrospectively studied. We calculated DFs between pCT and week 1-3 CBCT by B-spline and Demon deformable image registration (DIR). The resultant DFs were subsequently used as input to our novel network to predict the week 4 to 6 DFs for generating predicted weekly PG contours and weekly dose distributions. For evaluation, we measured dice similarity (DICE), and the uncertainty of accumulated dose. Moreover, we compared the detection accuracies of candidates for adaptive radiotherapy (ART) when the trigger criteria were mean dose difference more than 10%, 7.5%, and 5%, respectively. The DICE of ipsilateral/contralateral PG at week 4 to 6 using the prediction model trained with B-spline were 0.81 [Formula: see text] 0.07/0.81 [Formula: see text] 0.04 (week 4), 0.79 [Formula: see text] 0.06/0.81 [Formula: see text] 0.05 (week 5) and 0.78 [Formula: see text] 0.06/0.82 [Formula: see text] (week 6). The DICE with the Demons model were 0.78 [Formula: see text] 0.08/0.82 [Formula: see text] 0.03 (week 4), 0.77 [Formula: see text] 0.07/0.82 [Formula: see text] 0.04 (week 5) and 0.75 [Formula: see text] 0.07/0.82 [Formula: see text] 0.02 (week 6). The dose volume histogram (DVH) analysis with the predicted accumulated dose showed the feasibility of predicting dose uncertainty due to the PG anatomical changes. The AUC of ART candidate detection with our predictive model was over 0.90. In conclusion, the proposed network was able to predict future anatomical changes and dose uncertainty of PGs with clinically acceptable accuracy, and hence can be readily integrated into the ART workflow.

摘要

在头颈部(HN)癌症的放射治疗(RT)过程中,腮腺(PG)的形状和体积可能会发生显著变化,从而导致所给予的剂量与计划剂量之间出现临床相关的偏差。对 RT 期间 PG 解剖结构的纵向变化进行早期和准确的预测,可以为计划适应提供信息。我们使用计划计算机断层扫描(pCT)和每周锥形束计算机断层扫描(CBCT)之间的位移场(DF)开发了一种用于纵向预测的深度神经网络。对 63 例接受容积调制弧治疗的 HN 患者进行回顾性研究。我们通过 B 样条和 Demon 可变形图像配准(DIR)计算 pCT 和第 1-3 周 CBCT 之间的 DF。随后,将得到的 DF 作为我们的新型网络的输入,以预测第 4 至 6 周的 DF,从而生成预测的每周 PG 轮廓和每周剂量分布。为了评估,我们测量了 DICE(重叠率)和累积剂量的不确定性。此外,我们比较了当触发标准分别为平均剂量差大于 10%、7.5%和 5%时,自适应放疗(ART)候选者的检测准确性。使用基于 B 样条的预测模型,第 4 至 6 周的同侧/对侧 PG 的 DICE 为 0.81 [Formula: see text] 0.07/0.81 [Formula: see text] 0.04(第 4 周),0.79 [Formula: see text] 0.06/0.81 [Formula: see text] 0.05(第 5 周)和 0.78 [Formula: see text] 0.06/0.82 [Formula: see text] (第 6 周)。使用 Demon 模型的 DICE 为 0.78 [Formula: see text] 0.08/0.82 [Formula: see text] 0.03(第 4 周),0.77 [Formula: see text] 0.07/0.82 [Formula: see text] 0.04(第 5 周)和 0.75 [Formula: see text] 0.07/0.82 [Formula: see text] 0.02(第 6 周)。使用预测累积剂量的剂量体积直方图(DVH)分析表明,预测由于 PG 解剖结构变化引起的剂量不确定性是可行的。我们的预测模型的 ART 候选检测的 AUC 超过 0.90。总之,所提出的网络能够以临床可接受的精度预测 PG 未来的解剖变化和剂量不确定性,因此可以很容易地集成到 ART 工作流程中。

相似文献

1
Predictive dose accumulation for HN adaptive radiotherapy.预测 HN 自适应放疗的剂量积累。
Phys Med Biol. 2020 Nov 27;65(23):235011. doi: 10.1088/1361-6560/abbdb8.

本文引用的文献

5
Deformable Registration for Dose Accumulation.用于剂量累加的可变形配准。
Semin Radiat Oncol. 2019 Jul;29(3):198-208. doi: 10.1016/j.semradonc.2019.02.002.
8
Deep Learning in Medical Imaging: General Overview.医学成像中的深度学习:概述
Korean J Radiol. 2017 Jul-Aug;18(4):570-584. doi: 10.3348/kjr.2017.18.4.570. Epub 2017 May 19.
10
Toward robust adaptive radiation therapy strategies.走向稳健的自适应放射治疗策略。
Med Phys. 2017 Jun;44(6):2054-2065. doi: 10.1002/mp.12226. Epub 2017 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验