Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
Med Phys. 2019 Oct;46(10):4699-4707. doi: 10.1002/mp.13765. Epub 2019 Sep 6.
To predict the spatial and temporal trajectories of lung tumor during radiotherapy monitored under a longitudinal magnetic resonance imaging (MRI) study via a deep learning algorithm for facilitating adaptive radiotherapy (ART).
We monitored 10 lung cancer patients by acquiring weekly MRI-T2w scans over a course of radiotherapy. Under an ART workflow, we developed a predictive neural network (P-net) to predict the spatial distributions of tumors in the coming weeks utilizing images acquired earlier in the course. The three-step P-net consisted of a convolutional neural network to extract relevant features of the tumor and its environment, followed by a recurrence neural network constructed with gated recurrent units to analyze trajectories of tumor evolution in response to radiotherapy, and finally an attention model to weight the importance of weekly observations and produce the predictions. The performance of P-net was measured with Dice and root mean square surface distance (RMSSD) between the algorithm-predicted and experts-contoured tumors under a leave-one-out scheme.
Tumor shrinkage was 60% ± 27% (mean ± standard deviation) by the end of radiotherapy across nine patients. Using images from the first three weeks, P-net predicted tumors on future weeks (4, 5, 6) with a Dice and RMSSD of (0.78 ± 0.22, 0.69 ± 0.24, 0.69 ± 0.26), and (2.1 ± 1.1 mm, 2.3 ± 0.8 mm, 2.6 ± 1.4 mm), respectively.
The proposed deep learning algorithm can capture and predict spatial and temporal patterns of tumor regression in a longitudinal imaging study. It closely follows the clinical workflow, and could facilitate the decision-making of ART. A prospective study including more patients is warranted.
通过深度学习算法预测纵向磁共振成像(MRI)研究监测下放疗过程中肺部肿瘤的空间和时间轨迹,以促进自适应放疗(ART)。
我们通过在放疗过程中每周采集 MRI-T2w 扫描,对 10 例肺癌患者进行监测。在 ART 工作流程下,我们开发了一个预测神经网络(P-net),利用早期采集的图像来预测未来几周肿瘤的空间分布。三步 P-net 包括一个卷积神经网络,用于提取肿瘤及其环境的相关特征,其次是一个带有门控循环单元的递归神经网络,用于分析肿瘤对放疗的进化轨迹,最后是一个注意力模型,用于对每周观察结果的重要性进行加权,并生成预测结果。采用 Dice 和均方根表面距离(RMSSD),通过留一法评估 P-net 预测结果与专家勾画肿瘤之间的差异。
9 例患者的肿瘤在放疗结束时缩小了 60%±27%(均值±标准差)。利用前 3 周的图像,P-net 预测了未来 4、5、6 周的肿瘤,Dice 和 RMSSD 分别为(0.78±0.22、0.69±0.24、0.69±0.26)和(2.1±1.1mm、2.3±0.8mm、2.6±1.4mm)。
该深度学习算法可以捕捉和预测纵向成像研究中肿瘤消退的空间和时间模式。它紧密遵循临床工作流程,有助于自适应放疗的决策。需要前瞻性研究纳入更多患者。