Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China.
Brain Institute, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China.
Alzheimers Res Ther. 2020 Oct 2;12(1):125. doi: 10.1186/s13195-020-00688-1.
Soluble beta-amyloid (Aβ) can be cleared from the brain through various mechanisms including enzymatic degradation, glial cell phagocytosis, transport across the blood-brain barrier, and glymphatic clearance. However, the relative contribution of each clearance system and their compensatory effects in delaying the pathological process of Alzheimer's disease (AD) are currently unknown.
Fluorescent trace, immunofluorescence, and Western blot analyses were performed to compare glymphatic clearance ability and Aβ accumulation among 3-month-old APP695/PS1-dE9 transgenic (APP/PS1) mice, wild-type mice, aquaporin 4 knock out (AQP4) mice, and AQP4/APP/PS1 mice. The consequence of selectively eliminating microglial cells, or downregulating apolipoprotein E (apoE) expression, on Aβ burden, was also investigated in the frontal cortex of AQP4/APP/PS1 mice and APP/PS1 mice.
AQP4 deletion in APP/PS1 mice significantly exaggerated glymphatic clearance dysfunction, and intraneuronal accumulation of Aβ and apoE, although it did not lead to Aβ plaque deposition. Notably, microglia, but not astrocytes, increased activation and phagocytosis of Aβ in the cerebral cortex of AQP4/APP/PS1 mice, compared with APP/PS1 mice. Selectively eliminating microglia in the frontal cortex via local injection of clodronate liposomes resulted in deposition of Aβ plaques in AQP4/APP/PS1 mice, but not APP/PS1 mice. Moreover, knockdown of apoE reduced intraneuronal Aβ levels in both APP/PS1 mice and AQP4/APP/PS1 mice, indicating an inhibitory effect of apoE on Aβ clearance.
The above results suggest that the glymphatic system mediated Aβ and apoE clearance and microglia mediated Aβ degradation synergistically prevent Aβ plague formation in the early stages of the AD mouse model. Protecting one or both of them might be beneficial to delaying the onset of AD.
可溶性β-淀粉样蛋白(Aβ)可以通过多种机制从大脑中清除,包括酶降解、神经胶质细胞吞噬、跨血脑屏障转运和淋巴系统清除。然而,目前尚不清楚每种清除系统的相对贡献及其在延缓阿尔茨海默病(AD)病理过程中的代偿作用。
通过荧光示踪、免疫荧光和 Western blot 分析,比较了 3 月龄 APP695/PS1-dE9 转基因(APP/PS1)小鼠、野生型小鼠、水通道蛋白 4 敲除(AQP4)小鼠和 AQP4/APP/PS1 小鼠的淋巴系统清除能力和 Aβ 积累。还研究了选择性消除小胶质细胞或下调载脂蛋白 E(apoE)表达对 AQP4/APP/PS1 小鼠和 APP/PS1 小鼠额皮质 Aβ负荷的影响。
APP/PS1 小鼠中 AQP4 的缺失显著加重了淋巴系统清除功能障碍,以及 Aβ 和 apoE 的细胞内积累,尽管这并没有导致 Aβ 斑块沉积。值得注意的是,与 APP/PS1 小鼠相比,AQP4/APP/PS1 小鼠大脑皮质中的小胶质细胞而非星形胶质细胞增加了 Aβ 的激活和吞噬作用。通过局部注射氯膦酸脂质体选择性消除额皮质中的小胶质细胞,导致 AQP4/APP/PS1 小鼠而非 APP/PS1 小鼠中 Aβ 斑块的沉积。此外,apoE 的敲低降低了 APP/PS1 小鼠和 AQP4/APP/PS1 小鼠中的细胞内 Aβ 水平,表明 apoE 对 Aβ 清除具有抑制作用。
上述结果表明,淋巴系统介导的 Aβ 和 apoE 清除以及小胶质细胞介导的 Aβ 降解协同作用,防止了 AD 小鼠模型早期 Aβ 斑块的形成。保护其中一种或两种物质可能有助于延缓 AD 的发病。