Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand.
Department of Bio-pharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani, 34190, Thailand.
Appl Microbiol Biotechnol. 2020 Nov;104(22):9565-9579. doi: 10.1007/s00253-020-10933-0. Epub 2020 Oct 3.
In this study, K. oxytoca KMS004 (ΔadhE Δpta-ackA) was further reengineered by the deletion of frdABCD and pflB genes to divert carbon flux through D-(-)-lactate production. During fermentation of high glucose concentration, the resulted strain named K. oxytoca KIS004 showed poor in growth and glucose consumption due to its insufficient capacity to generate acetyl-CoA for biosynthesis. Evolutionary adaptation was thus employed with the strain to overcome impaired growth and acetate auxotroph. The evolved K. oxytoca KIS004-91T strain exhibited significantly higher glucose-utilizing rate and D-(-)-lactate production as a primary route to regenerate NAD. D-(-)-lactate at concentration of 133 g/L (1.48 M), with yield and productivity of 0.98 g/g and 2.22 g/L/h, respectively, was obtained by the strain. To the best of our knowledge, this strain provided a relatively high specific productivity of 1.91 g/gCDW/h among those of other previous works. Cassava starch was also used to demonstrate a potential low-cost renewable substrate for D-(-)-lactate production. Production cost of D-(-)-lactate was estimated at $3.72/kg. Therefore, it is possible for the KIS004-91T strain to be an alternative biocatalyst offering a more economically competitive D-(-)-lactate production on an industrial scale. KEY POINTS: • KIS004-91T produced optically pure D-(-)-lactate up to 1.48 M in a low salts medium. • It possessed the highest specific D-(-)-lactate productivity than other reported strains. • Cassava starch as a cheap and renewable substrate was used for D-(-)-lactate production. • Costs related to media, fermentation, purification, and waste disposal were reduced.
在这项研究中,通过缺失 frdABCD 和 pflB 基因,进一步对 K. oxytoca KMS004(ΔadhE Δpta-ackA)进行了再工程改造,以使碳通量转向 D-(-)-乳酸生产。在高葡萄糖浓度发酵过程中,由于其生成乙酰辅酶 A 用于生物合成的能力不足,导致所得菌株 K. oxytoca KIS004 生长和葡萄糖消耗不良。因此,采用进化适应策略来克服生长受损和醋酸盐营养缺陷。经过进化的 K. oxytoca KIS004-91T 菌株表现出更高的葡萄糖利用率和 D-(-)-乳酸产量,作为再生 NAD 的主要途径。该菌株可获得 133 g/L(1.48 M)的 D-(-)-乳酸浓度,分别为 0.98 g/g 和 2.22 g/L/h 的产率和生产率。据我们所知,与其他先前的工作相比,该菌株提供了相对较高的特定生产率 1.91 g/gCDW/h。还使用木薯淀粉来证明 D-(-)-乳酸生产的潜在低成本可再生底物。D-(-)-乳酸的生产成本估计为 3.72 美元/kg。因此,KIS004-91T 菌株有可能成为替代生物催化剂,在工业规模上提供更具经济竞争力的 D-(-)-乳酸生产。关键点:• KIS004-91T 在低盐培养基中生产高达 1.48 M 的光学纯 D-(-)-乳酸。• 它具有比其他报道的菌株更高的特定 D-(-)-乳酸生产率。• 木薯淀粉作为一种廉价且可再生的底物用于 D-(-)-乳酸生产。• 与培养基、发酵、纯化和废物处理相关的成本降低。