Department of Information Systems, College of Business, California State University Long Beach, USA.
Department of Operations and Information Systems, David Eccles School of Business, University of Utah, USA.
J Biomed Inform. 2020 Nov;111:103576. doi: 10.1016/j.jbi.2020.103576. Epub 2020 Oct 1.
Electronic health records (EHRs) often suffer missing values, for which recent advances in deep learning offer a promising remedy. We develop a deep learning-based, unsupervised method to impute missing values in patient records, then examine its imputation effectiveness and predictive efficacy for peritonitis patient management. Our method builds on a deep autoencoder framework, incorporates missing patterns, accounts for essential relationships in patient data, considers temporal patterns common to patient records, and employs a novel loss function for error calculation and regularization. Using a data set of 27,327 patient records, we perform a comparative evaluation of the proposed method and several prevalent benchmark techniques. The results indicate the greater imputation performance of our method relative to all the benchmark techniques, recording 5.3-15.5% lower imputation errors. Furthermore, the data imputed by the proposed method better predict readmission, length of stay, and mortality than those obtained from any benchmark techniques, achieving 2.7-11.5% improvements in predictive efficacy. The illustrated evaluation indicates the proposed method's viability, imputation effectiveness, and clinical decision support utilities. Overall, our method can reduce imputation biases and be applied to various missing value scenarios clinically, thereby empowering physicians and researchers to better analyze and utilize EHRs for improved patient management.
电子健康记录 (EHR) 常常存在缺失值,深度学习的最新进展为解决这一问题提供了有前景的方法。我们开发了一种基于深度学习的无监督方法来填补患者记录中的缺失值,然后检查其对腹膜炎患者管理的填补效果和预测效果。我们的方法基于深度自动编码器框架,结合缺失模式,考虑患者数据中的基本关系,考虑患者记录中常见的时间模式,并采用新的损失函数进行误差计算和正则化。使用包含 27327 名患者记录的数据集,我们对所提出的方法和几种流行的基准技术进行了比较评估。结果表明,与所有基准技术相比,我们的方法具有更好的填补性能,其填补误差低 5.3-15.5%。此外,与任何基准技术相比,所提出的方法填补的数据更能准确预测再入院、住院时间和死亡率,预测效果提高了 2.7-11.5%。所展示的评估表明了所提出的方法的可行性、填补效果和临床决策支持效用。总的来说,我们的方法可以减少填补偏差,并在临床上应用于各种缺失值场景,从而使医生和研究人员能够更好地分析和利用 EHR 以改善患者管理。