Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, OH, United States.
Department of Emergency Medicine, University of Chicago, Chicago, IL, United States.
Respir Physiol Neurobiol. 2021 Jan;283:103558. doi: 10.1016/j.resp.2020.103558. Epub 2020 Sep 30.
Respiratory parameters change during post-natal development, but the nature of their changes have not been well-described. The advent of commercially available plethysmographic instruments provided improved repeatability of measurements and standardization of measured breathing in mice across laboratories. These technologies thus allowed for exploration of more precise respiratory pattern changes during the post-natal developmental epoch. Current methods to analyze respiratory behavior utilize plethysmography to acquire standing values of frequency, volume and flow at specific time points in murine maturation. These metrics have historically been independently analyzed as a function of time with no further analysis examining the interplay these variables have with each other and in the context of postnatal maturation or during blood gas homeostasis. We posit that machine learning workflows can provide deeper physiological understanding into the postnatal development of respiration. In this manuscript, we delineate a machine learning workflow based on the R-statistical programming language to examine how variation and relationships of frequency (f) and tidal volume (TV) change with respect to inspiratory and expiratory parameters. Our analytical workflows could successfully predict age and found that the variation and relationships between respiratory metrics are dynamically shifting with age and during hypercapnic breathing. Thus, our work demonstrates the utility of high dimensional analyses to provide reliable class label predictions using non-invasive respiratory metrics. These approaches may be useful in large-scale phenotyping across development and in disease.
呼吸参数在出生后发育过程中发生变化,但它们的变化性质尚未得到很好的描述。商业上可用的体积描记仪器的出现提高了测量的可重复性,并在实验室之间实现了对小鼠呼吸的标准化测量。这些技术因此允许在出生后发育阶段探索更精确的呼吸模式变化。目前分析呼吸行为的方法利用体积描记法在特定时间点在小鼠成熟过程中获取频率、体积和流量的站立值。这些指标历来都是作为时间的函数进行独立分析的,没有进一步的分析来研究这些变量之间的相互作用以及它们与出生后成熟或血气平衡期间的关系。我们假设机器学习工作流程可以为呼吸的出生后发育提供更深入的生理学理解。在本文中,我们描述了一个基于 R 统计编程语言的机器学习工作流程,以检查频率 (f) 和潮气量 (TV) 的变化以及它们与吸气和呼气参数的关系如何随时间变化。我们的分析工作流程能够成功地预测年龄,并发现呼吸指标之间的变化和关系随着年龄的增长和在高碳酸呼吸期间动态变化。因此,我们的工作表明,高维分析可以使用非侵入性呼吸指标提供可靠的类别标签预测,这些方法在整个发育过程和疾病中的大规模表型分析中可能很有用。