Hu Ning, Wang Li, Liao MengGen, Yin MengLan
Wuhan University of Science and Technology, Wuhan 430081, China.
Wuhan University of Science and Technology, Wuhan 430081, China.
Bioelectrochemistry. 2021 Feb;137:107672. doi: 10.1016/j.bioelechem.2020.107672. Epub 2020 Sep 19.
The reduction of CO to organics using microbial electrosynthesis (MES) is currently a popular research direction in the environmental field. In this study, we evaluated the effect of the electrode material on the production of organics from CO in microbial electrosynthesis with a mixed-culture biocathode. The electrode material is an important factor influencing electron transfer, since it directly affects the efficiency of CO reduction. In this study, we compared the performance of a graphite electrode and a metal-based carbon hybrid material electrode for the electro-reduction of CO The cathode potential was set to -0.8 V (vs Ag/AgCl). When the cathode material was changed from a graphite electrode to a nano-titanium carburizing electrode, the current density of MES increased from 1.66 ± 0.2 A·m to 2.75 ± 0.2 A·m, acetate accumulation increased from 127 mg/L to 234 mg/L, butyrate accumulation increased from 46 mg/L to 86.5 mg/L, and the total electron recovery of MES increased to nearly 70%. The results show that improving electrode performance can effectively improve the efficiency of MES for reducing CO. Metal-based carbon hybrid materials have good biological affinity and stability and also have good electrochemical performance.
利用微生物电合成(MES)将一氧化碳还原为有机物是目前环境领域一个热门的研究方向。在本研究中,我们评估了电极材料对混合培养生物阴极微生物电合成中一氧化碳还原生成有机物的影响。电极材料是影响电子转移的一个重要因素,因为它直接影响一氧化碳还原的效率。在本研究中,我们比较了石墨电极和金属基碳混合材料电极对一氧化碳进行电还原的性能。阴极电位设定为-0.8 V(相对于Ag/AgCl)。当阴极材料从石墨电极变为纳米碳化钛电极时,微生物电合成的电流密度从1.66±0.2 A·m增加到2.75±0.2 A·m,乙酸盐积累从127 mg/L增加到234 mg/L,丁酸盐积累从46 mg/L增加到86.5 mg/L,微生物电合成的总电子回收率提高到近70%。结果表明,改善电极性能可有效提高微生物电合成还原一氧化碳的效率。金属基碳混合材料具有良好的生物亲和性和稳定性,并且还具有良好的电化学性能。