Liu Yunpeng, Li Yu-Hang, Li Xiaoyao, Zhang Qiao, Yu Hao, Peng Xinwen, Peng Feng
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
ACS Nano. 2020 Oct 27;14(10):14181-14189. doi: 10.1021/acsnano.0c07089. Epub 2020 Oct 4.
A facile strategy for the preparation of a nanoconfined TiC/Ru cocatalyst by direct reduction of Ru ions without an additional reductant was developed. The formation of TiO nanosheets on the TiC/Ru surface ensures the separation of the semiconductor and cocatalyst (TiO-TiC/Ru), resulting in charge segregation and migration more effective than those achieved by traditionally prepared Ru-TiO-TiC. Owing to its low Fermi level, the self-assembled TiC/Ru cocatalyst accepted the photogenerated electrons and promoted H evolution without an induction period, while exhibiting high surface structure stability. The changes in the work function and surface terminations of TiC during the photocatalysis were revealed by DFT calculations and diffuse reflectance infrared Fourier transform spectroscopy. The efficient electron transfer enabled by the structurally separated TiC/Ru-based photocatalyst significantly reduced the electron-hole recombination, increasing the photocatalytic H evolution activity. This work provides a guiding design approach for future solar energy conversion with the semiconductor-cocatalyst system.
开发了一种简便的策略,通过直接还原Ru离子而无需额外的还原剂来制备纳米受限的TiC/Ru助催化剂。在TiC/Ru表面形成TiO纳米片可确保半导体和助催化剂(TiO-TiC/Ru)的分离,从而使电荷分离和迁移比传统制备的Ru-TiO-TiC更有效。由于其费米能级较低,自组装的TiC/Ru助催化剂接受光生电子并促进析氢,且无诱导期,同时表现出高表面结构稳定性。通过密度泛函理论(DFT)计算和漫反射红外傅里叶变换光谱揭示了光催化过程中TiC的功函数和表面终止的变化。基于结构分离的TiC/Ru的光催化剂实现的高效电子转移显著减少了电子-空穴复合,提高了光催化析氢活性。这项工作为未来利用半导体-助催化剂系统进行太阳能转换提供了一种指导性的设计方法。