Wong Khai Jie, Foo Joel Jie, Siang Tan Ji, Khoo Valerine, Ong Wee-Jun
School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Selangor Darul Ehsan 43900 Malaysia.
Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT) Xiamen University Malaysia Selangor Selangor Darul Ehsan 43900 Malaysia.
Glob Chall. 2024 May 11;8(6):2300235. doi: 10.1002/gch2.202300235. eCollection 2024 Jun.
Photocatalytic hydrogen evolution is an environmentally friendly means of energy generation. Although g-CN possesses fascinating features, its inherent shortcomings limit its photocatalytic applications. Therefore, modifying the intrinsic properties of g-CN and introducing cocatalysts are essential to ameliorate the photocatalytic efficiency. To achieve this, metal-like TiCT is integrated with crystalline g-CN via a combined salt-assisted and freeze-drying approach to form crystalline g-CN/TiCT (CCN/TCT) hybrids with different TiCT loading amounts (0, 0.2, 0.3, 0.4, 0.5, 1, 5, 10 wt.%). Benefiting from the crystallization of CN, as evidenced by the XRD graph, and the marvelous conductivity of TiCT supported by EIS plots, CCN/TCT/Pt loaded with 0.5 wt.% TiCT displays an elevated H2 (2) should be subscripted evolution rate of 2651.93 µmol g h and a high apparent quantum efficiency of 7.26% (420 nm), outperforming CN/Pt, CCN/Pt, and other CCN/TCT/Pt hybrids. The enhanced performance is attributed to the synergistic effect of the highly crystalline structure of CCN that enables fleet charge transport and the efficient dual cocatalysts, TiCT and Pt, that foster charge separation and provide plentiful active sites. This work demonstrates the potential of CCN/TCT as a promising material for hydrogen production, suggesting a significant advancement in the design of CCN heterostructures for effective photocatalytic systems.
光催化析氢是一种环境友好的能源生成方式。尽管石墨相氮化碳(g-CN)具有迷人的特性,但其固有缺点限制了其光催化应用。因此,改变g-CN的固有性质并引入助催化剂对于提高光催化效率至关重要。为实现这一目标,通过盐辅助和冷冻干燥相结合的方法将类金属TiCT与结晶态g-CN整合,以形成具有不同TiCT负载量(0、0.2、0.3、0.4、0.5、1、5、10 wt.%)的结晶态g-CN/TiCT(CCN/TCT)杂化物。受益于XRD图谱所证明的CN结晶以及EIS图所支持的TiCT的优异导电性,负载0.5 wt.% TiCT的CCN/TCT/Pt表现出2651.93 μmol g⁻¹ h⁻¹的提高的H₂析出速率和7.26%(420 nm)的高表观量子效率,优于CN/Pt、CCN/Pt和其他CCN/TCT/Pt杂化物。性能的提高归因于CCN高度结晶结构的协同效应,其能够实现快速电荷传输,以及高效的双助催化剂TiCT和Pt,它们促进电荷分离并提供丰富的活性位点。这项工作证明了CCN/TCT作为一种有前途的制氢材料的潜力,表明在用于有效光催化系统的CCN异质结构设计方面取得了重大进展。