Suppr超能文献

导航网络的广义线性模型。

A Generalized Linear Model of a Navigation Network.

机构信息

Department of Life Sciences, Ben Gurion University of the Negev, Beersheba, Israel.

Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beersheba, Israel.

出版信息

Front Neural Circuits. 2020 Sep 9;14:56. doi: 10.3389/fncir.2020.00056. eCollection 2020.

Abstract

Navigation by mammals is believed to rely on a network of neurons in the hippocampal formation, which includes the hippocampus, the medial entorhinal cortex (MEC), and additional nearby regions. Neurons in these regions represent spatial information by tuning to the position, orientation, and speed of the animal in the form of head direction cells, speed cells, grid cells, border cells, and unclassified spatially modulated cells. While the properties of single cells are well studied, little is known about the functional structure of the network in the MEC. Here, we use a generalized linear model to study the network of spatially modulated cells in the MEC. We found connectivity patterns between all spatially encoding cells and not only grid cells. In addition, the neurons' past activity contributed to the overall activity patterns. Finally, position-modulated cells and head direction cells differed in the dependence of the activity on the history. Our results indicate that MEC neurons form a local interacting network to support spatial information representations and suggest an explanation for their complex temporal properties.

摘要

哺乳动物的导航被认为依赖于海马结构中的神经元网络,其中包括海马体、内嗅皮层(MEC)和其他附近区域。这些区域中的神经元通过调谐动物的位置、方向和速度以头方向细胞、速度细胞、网格细胞、边界细胞和未分类的空间调制细胞的形式来表示空间信息。虽然单个细胞的特性已经得到了很好的研究,但关于 MEC 中网络的功能结构知之甚少。在这里,我们使用广义线性模型来研究 MEC 中的空间调制细胞网络。我们发现所有空间编码细胞之间存在连接模式,而不仅仅是网格细胞。此外,神经元的过去活动有助于整体活动模式。最后,位置调制细胞和头方向细胞在活动对历史的依赖上有所不同。我们的结果表明,MEC 神经元形成局部相互作用网络,以支持空间信息表示,并为它们复杂的时间特性提供了解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dba/7509173/c07dbeac5d8a/fncir-14-00056-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验