Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
University of Tuebingen, Tuebingen, Germany.
Nature. 2024 Oct;634(8033):397-406. doi: 10.1038/s41586-024-07867-2. Epub 2024 Aug 28.
Spatial learning in teleost fish requires an intact telencephalon, a brain region that contains putative analogues to components of the mammalian limbic system (for example, hippocampus). However, cells fundamental to spatial cognition in mammals-for example, place cells (PCs)-have yet to be established in any fish species. In this study, using tracking microscopy to record brain-wide calcium activity in freely swimming larval zebrafish, we compute the spatial information content of each neuron across the brain. Strikingly, in every recorded animal, cells with the highest spatial specificity were enriched in the zebrafish telencephalon. These PCs form a population code of space from which we can decode the animal's spatial location across time. By continuous recording of population-level activity, we found that the activity manifold of PCs refines and untangles over time. Through systematic manipulation of allothetic and idiothetic cues, we demonstrate that zebrafish PCs integrate multiple sources of information and can flexibly remap to form distinct spatial maps. Using analysis of neighbourhood distance between PCs across environments, we found evidence for a weakly preconfigured network in the telencephalon. The discovery of zebrafish PCs represents a step forward in our understanding of spatial cognition across species and the functional role of the early vertebrate telencephalon.
硬骨鱼类的空间学习需要一个完整的端脑,端脑包含了哺乳动物边缘系统的类似成分(例如海马体)。然而,在任何鱼类物种中,对于空间认知至关重要的细胞——例如位置细胞(PCs)——尚未被确定。在这项研究中,我们使用跟踪显微镜记录自由游动的斑马鱼幼虫的全脑钙活性,从而计算出整个大脑中每个神经元的空间信息含量。引人注目的是,在每只记录的动物中,具有最高空间特异性的细胞在斑马鱼端脑中富集。这些 PCs 形成了一个空间的群体代码,我们可以通过这个代码来解码动物在不同时间的空间位置。通过对群体水平活动的连续记录,我们发现 PCs 的活动流形随时间而细化和解开。通过对异位和同位线索的系统操作,我们证明了斑马鱼的 PCs 整合了多种信息来源,并能够灵活地重新映射以形成不同的空间图谱。通过对不同环境下 PC 之间邻域距离的分析,我们发现了端脑中存在一个弱预先配置网络的证据。斑马鱼 PCs 的发现标志着我们在跨物种的空间认知理解以及早期脊椎动物端脑的功能作用方面迈出了一步。