Suppr超能文献

揭示城市连续体:跨学科视角的影响与交叉比较

Exposing the urban continuum: Implications and cross-comparison from an interdisciplinary perspective.

作者信息

Uhl Johannes H, Zoraghein Hamidreza, Leyk Stefan, Balk Deborah, Corbane Christina, Syrris Vasileios, Florczyk Aneta J

机构信息

Department of Geography, University of Colorado Boulder, Boulder, Colorado, USA.

National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA.

出版信息

Int J Digit Earth. 2020;13(1):22-44. doi: 10.1080/17538947.2018.1550120. Epub 2018 Nov 26.

Abstract

There is an increasing availability of geospatial data describing patterns of human settlement and population such as various global remote-sensing based built-up land layers, fine-grained census-based population estimates, and publicly available cadastral and building footprint data. This development constitutes new integrative modelling opportunities to characterize the continuum of urban, peri-urban, and rural settlements and populations. However, little research has been done regarding the agreement between such data products in measuring human presence which is measured by different proxy variables (i.e., presence of built-up structures derived from different remote sensors, census-derived population counts, or cadastral land parcels). In this work, we quantitatively evaluate and cross-compare the ability of such data to model the urban continuum, using a unique, integrated validation database of cadastral and building footprint data, U.S. census data, and three different versions of the Global Human Settlement Layer (GHSL) derived from remotely sensed data. We identify advantages and shortcomings of these data types across different geographic settings in the U.S., which will inform future data users on implications of data accuracy and suitability for a given application, even in data-poor regions of the world.

摘要

描述人类居住和人口模式的地理空间数据越来越多,例如各种基于全球遥感的建成区土地图层、基于精细人口普查的人口估计数据,以及公开可用的地籍和建筑物占地面积数据。这一发展为表征城市、城郊和农村住区及人口的连续性提供了新的综合建模机会。然而,对于这些数据产品在通过不同代理变量(即来自不同遥感传感器的建成结构、人口普查得出的人口计数或地籍地块)测量人类存在方面的一致性,相关研究甚少。在这项工作中,我们使用一个独特的、集成的验证数据库,该数据库包含地籍和建筑物占地面积数据、美国人口普查数据以及从遥感数据得出的三个不同版本的全球人类住区层(GHSL),对这些数据建模城市连续性的能力进行了定量评估和交叉比较。我们确定了这些数据类型在美国不同地理环境中的优势和不足,这将为未来的数据用户提供信息,使其了解数据准确性和适用性对特定应用的影响,即使在世界上数据匮乏的地区也是如此。

相似文献

1
Exposing the urban continuum: Implications and cross-comparison from an interdisciplinary perspective.
Int J Digit Earth. 2020;13(1):22-44. doi: 10.1080/17538947.2018.1550120. Epub 2018 Nov 26.
2
Accuracy assessment of Global Human Settlement Layer (GHSL) built-up products over China.
PLoS One. 2020 May 29;15(5):e0233164. doi: 10.1371/journal.pone.0233164. eCollection 2020.
3
Assessing the Accuracy of Multi-Temporal Built-Up Land Layers across Rural-Urban Trajectories in the United States.
Remote Sens Environ. 2018 Jan;204:898-917. doi: 10.1016/j.rse.2017.08.035. Epub 2017 Oct 7.
4
Combining Remote-Sensing-Derived Data and Historical Maps for Long-Term Back-Casting of Urban Extents.
Remote Sens (Basel). 2021 Sep;13(18). doi: 10.3390/rs13183672. Epub 2021 Sep 14.
5
Spatially explicit accuracy assessment of deep learning-based, fine-resolution built-up land data in the United States.
Int J Appl Earth Obs Geoinf. 2023 Sep;123. doi: 10.1016/j.jag.2023.103469. Epub 2023 Aug 28.
6
Land use efficiency of functional urban areas: Global pattern and evolution of development trajectories.
Habitat Int. 2022 May;123:None. doi: 10.1016/j.habitatint.2022.102543.
7
Urbanization in India: Population and Urban Classification Grids for 2011.
Data (Basel). 2019 Mar;4(1). doi: 10.3390/data4010035. Epub 2019 Feb 26.
8
Assessing the relationship between morphology and mapping accuracy of built-up areas derived from global human settlement data.
GIsci Remote Sens. 2022;59(1):1722-1748. doi: 10.1080/15481603.2022.2131192. Epub 2022 Oct 12.
10
MTBF-33: A multi-temporal building footprint dataset for 33 counties in the United States (1900 - 2015).
Data Brief. 2022 Jun 13;43:108369. doi: 10.1016/j.dib.2022.108369. eCollection 2022 Aug.

引用本文的文献

1
Spatially explicit accuracy assessment of deep learning-based, fine-resolution built-up land data in the United States.
Int J Appl Earth Obs Geoinf. 2023 Sep;123. doi: 10.1016/j.jag.2023.103469. Epub 2023 Aug 28.
2
Urbanization in India: Population and Urban Classification Grids for 2011.
Data (Basel). 2019 Mar;4(1). doi: 10.3390/data4010035. Epub 2019 Feb 26.
3
MTBF-33: A multi-temporal building footprint dataset for 33 counties in the United States (1900 - 2015).
Data Brief. 2022 Jun 13;43:108369. doi: 10.1016/j.dib.2022.108369. eCollection 2022 Aug.
4
Fine-grained, spatiotemporal datasets measuring 200 years of land development in the United States.
Earth Syst Sci Data. 2021;13(1):119-153. doi: 10.5194/essd-13-119-2021. Epub 2021 Jan 27.

本文引用的文献

1
Enhancing Areal Interpolation Frameworks through Dasymetric Refinement to Create Consistent Population Estimates across Censuses.
Int J Geogr Inf Sci. 2018;32(10):1948-1976. doi: 10.1080/13658816.2018.1472267. Epub 2018 May 11.
2
Assessing the Accuracy of Multi-Temporal Built-Up Land Layers across Rural-Urban Trajectories in the United States.
Remote Sens Environ. 2018 Jan;204:898-917. doi: 10.1016/j.rse.2017.08.035. Epub 2017 Oct 7.
3
Learning Building Extraction in Aerial Scenes with Convolutional Networks.
IEEE Trans Pattern Anal Mach Intell. 2018 Nov;40(11):2793-2798. doi: 10.1109/TPAMI.2017.2750680. Epub 2017 Sep 11.
4
China: Open access to Earth land-cover map.
Nature. 2014 Oct 23;514(7523):434. doi: 10.1038/514434c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验