Suppr超能文献

每年利用次国家层面人口和夜间灯光的相对变化,对遥感观测之间的建成区进行建模。

Annually modelling built-settlements between remotely-sensed observations using relative changes in subnational populations and lights at night.

作者信息

Nieves Jeremiah J, Sorichetta Alessandro, Linard Catherine, Bondarenko Maksym, Steele Jessica E, Stevens Forrest R, Gaughan Andrea E, Carioli Alessandra, Clarke Donna J, Esch Thomas, Tatem Andrew J

机构信息

WorldPop Project, UK.

Department of Geography and Environment, University of Southampton, UK.

出版信息

Comput Environ Urban Syst. 2020 Mar;80:101444. doi: 10.1016/j.compenvurbsys.2019.101444.

Abstract

Mapping urban features/human built-settlement extents at the annual time step has a wide variety of applications in demography, public health, sustainable development, and many other fields. Recently, while more multitemporal urban features/human built-settlement datasets have become available, issues still exist in remotely-sensed imagery due to spatial and temporal coverage, adverse atmospheric conditions, and expenses involved in producing such datasets. Remotely-sensed annual time-series of urban/built-settlement extents therefore do not yet exist and cover more than specific local areas or city-based regions. Moreover, while a few high-resolution global datasets of urban/built-settlement extents exist for key years, the observed date often deviates many years from the assigned one. These challenges make it difficult to increase temporal coverage while maintaining high fidelity in the spatial resolution. Here we describe an interpolative and flexible modelling framework for producing annual built-settlement extents. We use a combined technique of random forest and spatio-temporal dasymetric modelling with open source subnational data to produce annual 100 m × 100 m resolution binary built-settlement datasets in four test countries located in varying environmental and developmental contexts for test periods of five-year gaps. We find that in the majority of years, across all study areas, the model correctly identified between 85 and 99% of pixels that transition to built-settlement. Additionally, with few exceptions, the model substantially out performed a model that gave every pixel equal chance of transitioning to built-settlement in each year. This modelling framework shows strong promise for filling gaps in cross-sectional urban features/built-settlement datasets derived from remotely-sensed imagery, provides a base upon which to create urban future/built-settlement extent projections, and enables further exploration of the relationships between urban/built-settlement area and population dynamics.

摘要

以年度时间步长绘制城市特征/人类建成区范围在人口统计学、公共卫生、可持续发展以及许多其他领域有着广泛的应用。近年来,虽然有了更多的多时相城市特征/人类建成区数据集,但由于空间和时间覆盖范围、不利的大气条件以及生成此类数据集的成本等因素,遥感影像中仍然存在问题。因此,目前尚不存在覆盖多个特定局部地区或城市区域的城市/建成区范围的遥感年度时间序列。此外,虽然存在一些关键年份的高分辨率全球城市/建成区范围数据集,但观测日期往往与指定日期相差多年。这些挑战使得在保持高空间分辨率保真度的同时增加时间覆盖范围变得困难。在此,我们描述了一种用于生成年度建成区范围的插值和灵活建模框架。我们使用随机森林和时空面积权重插值建模的组合技术,结合开源的次国家级数据,在四个处于不同环境和发展背景的测试国家中,以五年为间隔的测试期生成年度100米×100米分辨率的二进制建成区数据集。我们发现,在大多数年份,在所有研究区域中,该模型正确识别了85%至99%转变为建成区的像素。此外,除了少数例外情况,该模型的表现大大优于一个在每年都给予每个像素同等转变为建成区机会的模型。这个建模框架在填补从遥感影像得出的横断面城市特征/建成区数据集的空白方面显示出巨大潜力,为创建城市未来/建成区范围预测提供了基础,并能够进一步探索城市/建成区面积与人口动态之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24d5/7043396/e34ba619d18c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验