Suppr超能文献

使用随机森林和变量选择通过任务功能磁共振成像预测关键反应治疗结果

PREDICTION OF PIVOTAL RESPONSE TREATMENT OUTCOME WITH TASK FMRI USING RANDOM FOREST AND VARIABLE SELECTION.

作者信息

Zhuang Juntang, Dvornek Nicha C, Li Xiaoxiao, Yang Daniel, Ventola Pamela, Duncan James S

机构信息

Biomedical Engineering, Yale University, New Haven, CT USA.

Child Study Center, Yale University, New Haven, CT USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:97-100. doi: 10.1109/ISBI.2018.8363531. Epub 2018 May 24.

Abstract

Behavior intervention has shown promise for treatment for young children with autism spectrum disorder (ASD). However, current therapeutic decisions are based on trial and error, often leading to suboptimal outcomes. We propose an approach that employs task-based fMRI for early outcome prediction. Our strategy is based on the general linear model (GLM) and a random forest, combined with feature selection techniques. GLM analysis is performed on each voxel to get t-statistic of contrast between two tasks. Due to the high dimensionality of predictor variables, feature selection is crucial for accurate prediction. Thus we propose a two-step feature selection method: a "shadow" method to select all-relevant variables, followed by a stepwise method to select minimal-optimal set of variables for prediction. A few columns of random noise are generated and added as shadow variables. Regression based on the random forest is performed, and permutation importance of each variable is estimated. Candidate voxels with higher importance than the shadow are kept. Surviving voxels are fed into stepwise variable selection methods. We test both forward and backward stepwise selection. Our method was validated on a dataset of 20 children with ASD using leave-one-out cross-validation, and compared to other standard regression methods. The proposed pipeline generated highest accuracy.

摘要

行为干预已显示出对自闭症谱系障碍(ASD)幼儿治疗的前景。然而,目前的治疗决策基于试错法,常常导致次优结果。我们提出一种采用基于任务的功能磁共振成像(fMRI)进行早期结果预测的方法。我们的策略基于通用线性模型(GLM)和随机森林,并结合特征选择技术。对每个体素进行GLM分析,以获得两个任务之间对比的t统计量。由于预测变量的高维度性,特征选择对于准确预测至关重要。因此,我们提出一种两步特征选择方法:一种“影子”方法来选择所有相关变量,随后采用逐步方法选择用于预测的最小最优变量集。生成几列随机噪声并作为影子变量添加。基于随机森林进行回归,并估计每个变量的排列重要性。保留重要性高于影子变量的候选体素。将留存的体素输入逐步变量选择方法。我们测试了向前和向后逐步选择。我们的方法在一个包含20名自闭症谱系障碍儿童的数据集上使用留一法交叉验证进行了验证,并与其他标准回归方法进行了比较。所提出的流程产生了最高的准确率。

相似文献

10
Comparison of variable selection methods for clinical predictive modeling.比较临床预测建模中的变量选择方法。
Int J Med Inform. 2018 Aug;116:10-17. doi: 10.1016/j.ijmedinf.2018.05.006. Epub 2018 May 21.

本文引用的文献

5
The social motivation theory of autism.自闭症的社会动机理论。
Trends Cogn Sci. 2012 Apr;16(4):231-9. doi: 10.1016/j.tics.2012.02.007. Epub 2012 Mar 17.
6
Neural signatures of autism.自闭症的神经特征。
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21223-8. doi: 10.1073/pnas.1010412107. Epub 2010 Nov 15.
9
Autism spectrum disorders.自闭症谱系障碍
Neuron. 2000 Nov;28(2):355-63. doi: 10.1016/s0896-6273(00)00115-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验