Suppr超能文献

基于患有和未患痴呆症的老年人视频的自动与手动疼痛编码及心率估计

Automated vs. manual pain coding and heart rate estimations based on videos of older adults with and without dementia.

作者信息

Castillo Louise Ir, Browne M Erin, Hadjistavropoulos Thomas, Prkachin Kenneth M, Goubran Rafik

机构信息

Department of Psychology, University of Regina, Regina, Canada.

Centre on Aging and Health, University of Regina, Regina, Canada.

出版信息

J Rehabil Assist Technol Eng. 2020 Sep 21;7:2055668320950196. doi: 10.1177/2055668320950196. eCollection 2020 Jan-Dec.

Abstract

INTRODUCTION

Technological advances have allowed for the estimation of physiological indicators from video data. FaceReader™ is an automated facial analysis software that has been used widely in studies of facial expressions of emotion and was recently updated to allow for the estimation of heart rate (HR) using remote photoplethysmography (rPPG). We investigated FaceReader™-based heart rate and pain expression estimations in older adults in relation to manual coding by experts.

METHODS

Using a video dataset of older adult patients with and without dementia, we assessed the relationship between FaceReader's™ HR estimations against a well-established Video Magnification (VM) algorithm during baseline and pain conditions. Furthermore, we examined the correspondence between the Facial Action Coding System (FACS)-based pain scores obtained through FaceReader™ and manual coding.

RESULTS

FaceReader's™ HR estimations were correlated with VM algorithm in baseline and pain conditions. Non-verbal FaceReader™ pain scores and manual coding were also highly correlated despite discrepancies between the FaceReader™ and manual coding in the absolute value of scores based on pain-related facial action coding of the events preceding and following the pain response.

CONCLUSIONS

Compared to expert manual FACS coding and optimized VM algorithm, FaceReader™ showed good results in estimating HR values and non-verbal pain scores.

摘要

引言

技术进步使得从视频数据中估计生理指标成为可能。FaceReader™是一款自动化面部分析软件,已广泛应用于情绪面部表情研究,最近进行了更新,以允许使用远程光电容积脉搏波描记法(rPPG)来估计心率(HR)。我们研究了基于FaceReader™的老年人心率和疼痛表情估计与专家手动编码之间的关系。

方法

使用患有和未患有痴呆症的老年患者的视频数据集,我们在基线和疼痛状态下评估了FaceReader™的心率估计值与成熟的视频放大(VM)算法之间的关系。此外,我们检查了通过FaceReader™获得的基于面部动作编码系统(FACS)的疼痛评分与手动编码之间的对应关系。

结果

FaceReader™的心率估计值在基线和疼痛状态下与VM算法相关。尽管在疼痛反应前后事件的基于疼痛相关面部动作编码的分数绝对值方面,FaceReader™和手动编码之间存在差异,但非语言的FaceReader™疼痛评分与手动编码也高度相关。

结论

与专家手动FACS编码和优化的VM算法相比,FaceReader™在估计心率值和非语言疼痛评分方面显示出良好的结果。

相似文献

8
Automatic Coding of Facial Expressions of Pain: Are We There Yet?自动编码疼痛的面部表情:我们做到了吗?
Pain Res Manag. 2022 Jan 11;2022:6635496. doi: 10.1155/2022/6635496. eCollection 2022.

本文引用的文献

1
Remote heart rate monitoring - Assessment of the Facereader rPPg by Noldus.远程心率监测 - Noldus 的 Facereader rPPg 评估。
PLoS One. 2019 Nov 22;14(11):e0225592. doi: 10.1371/journal.pone.0225592. eCollection 2019.
6
Algorithmic Principles of Remote PPG.远程光电容积脉搏波描记法的算法原理
IEEE Trans Biomed Eng. 2017 Jul;64(7):1479-1491. doi: 10.1109/TBME.2016.2609282. Epub 2016 Sep 13.
9
10
Assessing pain objectively: the use of physiological markers.客观评估疼痛:生理标志物的应用。
Anaesthesia. 2015 Jul;70(7):828-47. doi: 10.1111/anae.13018. Epub 2015 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验