Zhang Yibo, Ceylan Koydemir Hatice, Shimogawa Michelle M, Yalcin Sener, Guziak Alexander, Liu Tairan, Oguz Ilker, Huang Yujia, Bai Bijie, Luo Yilin, Luo Yi, Wei Zhensong, Wang Hongda, Bianco Vittorio, Zhang Bohan, Nadkarni Rohan, Hill Kent, Ozcan Aydogan
1Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA.
2Bioengineering Department, University of California, Los Angeles, CA 90095 USA.
Light Sci Appl. 2018 Dec 12;7:108. doi: 10.1038/s41377-018-0110-1. eCollection 2018.
Parasitic infections constitute a major global public health issue. Existing screening methods that are based on manual microscopic examination often struggle to provide sufficient volumetric throughput and sensitivity to facilitate early diagnosis. Here, we demonstrate a motility-based label-free computational imaging platform to rapidly detect motile parasites in optically dense bodily fluids by utilizing the locomotion of the parasites as a specific biomarker and endogenous contrast mechanism. Based on this principle, a cost-effective and mobile instrument, which rapidly screens 3.2 mL of fluid sample in three dimensions, was built to automatically detect and count motile microorganisms using their holographic time-lapse speckle patterns. We demonstrate the capabilities of our platform by detecting trypanosomes, which are motile protozoan parasites, with various species that cause deadly diseases affecting millions of people worldwide. Using a holographic speckle analysis algorithm combined with deep learning-based classification, we demonstrate sensitive and label-free detection of trypanosomes within spiked whole blood and artificial cerebrospinal fluid (CSF) samples, achieving a limit of detection of ten trypanosomes per mL of whole blood (five-fold better than the current state-of-the-art parasitological method) and three trypanosomes per mL of CSF. We further demonstrate that this platform can be applied to detect other motile parasites by imaging , the causative agent of trichomoniasis, which affects 275 million people worldwide. With its cost-effective, portable design and rapid screening time, this unique platform has the potential to be applied for sensitive and timely diagnosis of neglected tropical diseases caused by motile parasites and other parasitic infections in resource-limited regions.
寄生虫感染是一个重大的全球公共卫生问题。现有的基于人工显微镜检查的筛查方法往往难以提供足够的通量和灵敏度来促进早期诊断。在此,我们展示了一种基于运动的无标记计算成像平台,通过利用寄生虫的运动作为特定生物标志物和内源性对比机制,快速检测光学密集体液中的活动寄生虫。基于这一原理,构建了一种经济高效的移动仪器,该仪器可在三个维度上快速筛查约3.2毫升的液体样本,以利用其全息延时散斑图案自动检测和计数活动微生物。我们通过检测锥虫展示了我们平台的能力,锥虫是活动的原生动物寄生虫,有多种物种会导致致命疾病,影响全球数百万人。使用全息散斑分析算法结合基于深度学习的分类,我们展示了在加标的全血和人工脑脊液(CSF)样本中对锥虫的灵敏且无标记检测,在全血中实现了每毫升十个锥虫的检测限(比当前最先进的寄生虫学方法好约五倍),在脑脊液中为每毫升三个锥虫。我们进一步证明,该平台可通过成像应用于检测其他活动寄生虫,即滴虫病的病原体,滴虫病影响全球2.75亿人。凭借其经济高效、便于携带的设计和快速的筛查时间,这个独特的平台有潜力应用于在资源有限地区对由活动寄生虫引起的被忽视热带病和其他寄生虫感染进行灵敏且及时的诊断。