Gunaratne Rajitha, Goncalves Joshua, Monteath Isaac, Sheh Raymond, Kapfer Michael, Chipper Richard, Robertson Brett, Khan Riaz, Fick Daniel, Ironside Charles N
Curtin University, Kent Street, Bentley 6102, Australia.
Australian Institute of Robotic Orthopaedics, 2 Centro Avenue, Subiaco 6008, Australia.
Biomed Opt Express. 2020 Aug 18;11(9):5122-5131. doi: 10.1364/BOE.397593. eCollection 2020 Sep 1.
To investigate the DRS of ovine joint tissue to determine the optimal optical wavelengths for tissue differentiation and relate these wavelengths to the biomolecular composition of tissues. In this study, we combine machine learning with DRS for tissue classification and then look further at the weighting matrix of the classifier to further understand the key differentiating features. Supervised machine learning was used to analyse DRS data. After normalising the data, dimension reduction was achieved through multiclass Fisher's linear discriminant analysis (Multiclass FLDA) and classified with linear discriminant analysis (LDA). The classifier was first run with all the tissue types and the wavelength range 190 nm - 1081 nm. We analysed the weighting matrix of the classifier and then ran the classifier again, the first time using the ten highest weighted wavelengths and the second using only the single highest. Our method was applied to a dataset containing ovine joint tissue including cartilage, cortical and subchondral bone, fat, ligament, meniscus, and muscle. : It achieved a classification accuracy of 100% using the wavelength 190 nm - 1081 nm (2048 attributes) with an accuracy of 90% being present for 10 attributes with the exception of those with comparable compositions such as ligament and meniscus. An accuracy greater than 70% was achieved using a single wavelength, with the same exceptions. Multiclass FLDA combined with LDA is a viable technique for tissue identification from DRS data. The majority of differentiating features existed within the wavelength ranges 370-470 and 800-1010 nm. Focusing on key spectral regions means that a spectrometer with a narrower range can potentially be used, with less computational power needed for subsequent analysis.
为了研究绵羊关节组织的漫反射光谱(DRS),以确定用于组织区分的最佳光学波长,并将这些波长与组织的生物分子组成相关联。在本研究中,我们将机器学习与DRS相结合进行组织分类,然后进一步研究分类器的加权矩阵,以进一步了解关键的区分特征。使用监督式机器学习来分析DRS数据。在对数据进行归一化之后,通过多类Fisher线性判别分析(Multiclass FLDA)实现降维,并使用线性判别分析(LDA)进行分类。分类器首先在所有组织类型和190 nm - 1081 nm波长范围内运行。我们分析了分类器的加权矩阵,然后再次运行分类器,第一次使用十个加权最高的波长,第二次仅使用加权最高的单个波长。我们的方法应用于一个包含绵羊关节组织的数据集,该数据集包括软骨、皮质骨和软骨下骨、脂肪、韧带、半月板和肌肉。使用190 nm - 1081 nm波长(2048个属性)时,分类准确率达到100%,对于10个属性,除了那些成分相似的组织(如韧带和半月板)外,准确率为90%。使用单个波长时,除了相同的例外情况,准确率大于70%。多类FLDA与LDA相结合是一种从DRS数据中识别组织的可行技术。大多数区分特征存在于370 - 470和800 - 1010 nm波长范围内。关注关键光谱区域意味着可能可以使用范围更窄的光谱仪,后续分析所需的计算能力也更少。