Suppr超能文献

通过网络分析鉴定和作为胃癌中具有预后价值的两个新的关键基因。

Identification of and as Two Novel Key Genes With Prognostic Value in Gastric Cancer by Network Analysis.

作者信息

Jiang Junjie, Ding Yongfeng, Wu Mengjie, Lyu Xiadong, Wang Haifeng, Chen Yanyan, Wang Haiyong, Teng Lisong

机构信息

Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Front Oncol. 2020 Sep 11;10:1765. doi: 10.3389/fonc.2020.01765. eCollection 2020.

Abstract

Gastric cancer (GC) is the fifth most frequently diagnosed malignancy, and the third leading cause of tumor-related mortalities worldwide. Due to a high heterogeneity in GC, its treatment and prognosis are challenging, necessitating urgent identification of novel prognostic predictors for GC patients. We downloaded RNA sequence data, from the Cancer Genome Atlas and microarray data from Gene Expression Omnibus database, then identified common differentially-expressed genes (DEGs) between GC and normal gastric tissues across four datasets. We then used a combination of protein-protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA) to identify key genes with prognostic value in GC. Thereafter, we used quantitative real time polymerase chain reaction (qRT-PCR) to validate expression of the identified key genes in the Zhejiang University (ZJU) cohort. Finally, we evaluated the relationships between gene expression and immune factors, including immune cells and biomarkers of immunotherapy. Among 426 common DEGs screened, 333 and 93 were upregulated and downregulated, respectively. PPI network and WGCNA successfully identified the top 30 hub genes, among which , and were common. Furthermore, and were negatively associated with prognosis of GC patients, implying that they were key GC predictors. Interestingly, and were positively correlated with predictive biomarkers for GC immunotherapy, including PD-L1 expression, CD8 T cells infiltration, and EBV status. and were identified as two novel key genes with prognostic value in GC by network analysis.

摘要

胃癌(GC)是全球第五大最常被诊断出的恶性肿瘤,也是肿瘤相关死亡的第三大主要原因。由于胃癌具有高度异质性,其治疗和预后颇具挑战性,因此迫切需要为胃癌患者确定新的预后预测指标。我们从癌症基因组图谱下载了RNA序列数据,并从基因表达综合数据库下载了微阵列数据,然后在四个数据集中确定了胃癌组织与正常胃组织之间的共同差异表达基因(DEG)。然后,我们结合蛋白质-蛋白质相互作用(PPI)网络和加权基因共表达网络分析(WGCNA)来识别胃癌中具有预后价值的关键基因。此后,我们使用定量实时聚合酶链反应(qRT-PCR)来验证浙江大学(ZJU)队列中所识别关键基因的表达。最后,我们评估了基因表达与免疫因子之间的关系,包括免疫细胞和免疫治疗的生物标志物。在筛选出的426个常见DEG中,分别有333个和93个上调和下调。PPI网络和WGCNA成功识别出前30个枢纽基因,其中,和是共同的。此外,和与胃癌患者的预后呈负相关,这意味着它们是胃癌的关键预测指标。有趣的是,和与胃癌免疫治疗的预测生物标志物呈正相关,包括PD-L1表达、CD8 T细胞浸润和EBV状态。通过网络分析,和被确定为胃癌中两个具有预后价值的新关键基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8968/7516284/4ad815fdcbb9/fonc-10-01765-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验