Ullah Kifayat, Jan Hammad Ahmad, Ahmad Mushtaq, Ullah Anwar
Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
Biofuel & Biodiversity Lab, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
Front Bioeng Biotechnol. 2020 Sep 4;8:756. doi: 10.3389/fbioe.2020.00756. eCollection 2020.
This study is reporting the biofuel synthesis and characterization from the novel non-edible feedstock cocklebur seeds oil. The Cocklebur crop seeds oil was studied as a potential source for biofuel production based on the chemical, structural and fuel properties analysis. The oil expression and FFAs content in cocklebur crop was reported 37.2% and 0.47 gram KOH/g, using soxhlet apparatus and acid base titration method, respectively. The maximum conversion and yield of the cocklebur crop seeds non-edible oil to biofuel was pursued 93.33%, using transesterification process. The optimum protocol for maximum conversion yield was adjusted: 1:7 oil-methanol molar ratios, ZnO nano-particle concentration 0.2 gm (w/w), reaction temperature 60°C, and reaction time 45 min, respectively. ZnO nano-particle was prepared by a modified sol-gel method, using gelatin and the particle was XRD, TEM, XPS, and UV-vis spectroscopies. Qualitatively, the cocklebur crop synthesized biofuel was quantified and structurally characterized by GC/MS, FT-IR, NMR, and AAS spectroscopies. Quantitatively, the fuel properties of cocklebur crop biofuel was analyzed and compared with the international ASTM and EN standards.
本研究报告了从新型非食用原料苍耳籽油菜籽合成生物燃料及其特性。基于化学、结构和燃料特性分析,对苍耳作物种子油作为生物燃料生产的潜在来源进行了研究。分别使用索氏提取器和酸碱滴定法,报道了苍耳作物的油提取率和游离脂肪酸含量分别为37.2%和0.47克氢氧化钾/克。采用酯交换工艺,追求苍耳作物种子非食用油转化为生物燃料的最大转化率和产率为93.33%。调整了最大转化率的最佳方案:油与甲醇的摩尔比为1:7、氧化锌纳米颗粒浓度为0.2克(重量/重量)、反应温度为60°C、反应时间为45分钟。采用改良溶胶-凝胶法,使用明胶制备氧化锌纳米颗粒,并通过X射线衍射、透射电子显微镜、X射线光电子能谱和紫外可见光谱对颗粒进行表征。定性地,通过气相色谱/质谱联用仪、傅里叶变换红外光谱仪、核磁共振仪和原子吸收光谱仪对苍耳作物合成的生物燃料进行了定量和结构表征。定量地,对苍耳作物生物燃料的燃料特性进行了分析,并与国际ASTM和EN标准进行了比较。