Galiffi Emanuele, Wang Yao-Ting, Lim Zhen, Pendry J B, Alù Andrea, Huidobro Paloma A
The Blackett Laboratory, Imperial College London, SW7 2AZ London, United Kingdom.
Department of Mathematics, Imperial College London, SW7 2AZ London, United Kingdom.
Phys Rev Lett. 2020 Sep 18;125(12):127403. doi: 10.1103/PhysRevLett.125.127403.
In order to confine waves beyond the diffraction limit, advances in fabrication techniques have enabled subwavelength structuring of matter, achieving near-field control of light and other types of waves. The price is often expensive fabrication needs and the irreversibility of device functionality, as well as the introduction of impurities, a major contributor to losses. In this Letter, we propose temporal inhomogeneities, such as a periodic drive in the electromagnetic properties of a surface which supports guided modes, as an alternative route for the coupling of propagating waves to evanescent modes across the light line, thus circumventing the need for subwavelength fabrication, and achieving the temporal counterpart of the classical Wood anomaly. We show analytically and numerically how this concept is valid for any material platform and at any frequency, and propose and model a realistic experiment in graphene to couple terahertz radiation to plasmons with unit efficiency, demonstrating that time modulation of material properties could be a tunable, lower-loss and fast-switchable alternative to the subwavelength structuring of matter for near-field wave control.
为了将波限制在衍射极限之外,制造技术的进步使得物质能够进行亚波长结构化,实现对光和其他类型波的近场控制。代价通常是昂贵的制造需求、器件功能的不可逆性以及杂质的引入,而杂质是造成损耗的主要因素。在本信函中,我们提出时间不均匀性,例如对支持导模的表面电磁特性进行周期性驱动,作为一种将传播波耦合到光线上方倏逝模的替代途径,从而避免了亚波长制造的需求,并实现了经典伍德异常的时间对应物。我们通过解析和数值方法表明,这一概念对任何材料平台和任何频率都是有效的,并提出并模拟了一个在石墨烯中的实际实验,以单位效率将太赫兹辐射耦合到等离子体激元,证明材料特性的时间调制对于近场波控制而言,可能是一种可调节、低损耗且快速可切换的替代物质亚波长结构化的方法。