Schwennicke Kai, Giebink Noel C, Yuen-Zhou Joel
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
Department of Electrical Engineering and Computer Science, and Physics, University of Michigan, Ann Arbor, MI 48109, USA.
Nanophotonics. 2024 Apr 15;13(14):2469-2478. doi: 10.1515/nanoph-2024-0049. eCollection 2024 Jun.
The vacuum Rabi splitting (VRS) in molecular polaritons stands as a fundamental measure of collective light-matter coupling. Despite its significance, the impact of molecular disorder on VRS is not fully understood yet. This study delves into the complexities of VRS amidst various distributions and degrees of disorder. Our analysis provides precise analytical expressions for linear absorption, transmission, and reflection spectra, along with a "sum" rule, offering a straightforward protocol for extracting accurate collective light-matter coupling values from experimental data. Importantly, our study cautions against directly translating large VRS to the onset of ultrastrong coupling regime. Furthermore, for rectangular disorder, we witness the emergence of narrow side bands alongside a broad central peak, indicating an extended coherence lifetime even in the presence of substantial disorder. These findings not only enhance our understanding of VRS in disordered molecular systems but also open avenues for achieving prolonged coherence lifetimes between the cavity and molecules via the interplay of collective coupling and disorder.
分子极化激元中的真空拉比分裂(VRS)是集体光与物质耦合的一种基本度量。尽管其具有重要意义,但分子无序对VRS的影响尚未完全理解。本研究深入探讨了在各种分布和无序程度下VRS的复杂性。我们的分析提供了线性吸收、透射和反射光谱的精确解析表达式,以及一个“求和”规则,为从实验数据中提取准确的集体光与物质耦合值提供了一个直接的方案。重要的是,我们的研究告诫不要直接将大的VRS转化为超强耦合 regime的开始。此外,对于矩形无序,我们观察到在一个宽的中心峰旁边出现了窄边带,这表明即使在存在大量无序的情况下,相干寿命也会延长。这些发现不仅增进了我们对无序分子系统中VRS的理解,而且还通过集体耦合和无序的相互作用为实现腔与分子之间更长的相干寿命开辟了途径。