Suppr超能文献

用于格点规范理论的基于等变流的采样

Equivariant Flow-Based Sampling for Lattice Gauge Theory.

作者信息

Kanwar Gurtej, Albergo Michael S, Boyda Denis, Cranmer Kyle, Hackett Daniel C, Racanière Sébastien, Rezende Danilo Jimenez, Shanahan Phiala E

机构信息

Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Center for Cosmology and Particle Physics, New York University, New York, New York 10003, USA.

出版信息

Phys Rev Lett. 2020 Sep 18;125(12):121601. doi: 10.1103/PhysRevLett.125.121601.

Abstract

We define a class of machine-learned flow-based sampling algorithms for lattice gauge theories that are gauge invariant by construction. We demonstrate the application of this framework to U(1) gauge theory in two spacetime dimensions, and find that, at small bare coupling, the approach is orders of magnitude more efficient at sampling topological quantities than more traditional sampling procedures such as hybrid Monte Carlo and heat bath.

摘要

我们定义了一类用于格点规范理论的基于机器学习的流采样算法,这类算法在构造上是规范不变的。我们展示了这个框架在二维时空的U(1)规范理论中的应用,并且发现,在小的裸耦合情况下,与诸如混合蒙特卡罗和热浴等更传统的采样程序相比,该方法在采样拓扑量方面效率要高几个数量级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验