Institute for Theoretical Physics, TU Wien, A-1040 Wien, Austria.
Phys Rev Lett. 2022 Jan 21;128(3):032003. doi: 10.1103/PhysRevLett.128.032003.
We propose lattice gauge equivariant convolutional neural networks (L-CNNs) for generic machine learning applications on lattice gauge theoretical problems. At the heart of this network structure is a novel convolutional layer that preserves gauge equivariance while forming arbitrarily shaped Wilson loops in successive bilinear layers. Together with topological information, for example, from Polyakov loops, such a network can, in principle, approximate any gauge covariant function on the lattice. We demonstrate that L-CNNs can learn and generalize gauge invariant quantities that traditional convolutional neural networks are incapable of finding.
我们提出了格点规范等变卷积神经网络(L-CNN),用于在格点规范理论问题上进行通用机器学习应用。该网络结构的核心是一个新颖的卷积层,它在连续的双线性层中形成任意形状的 Wilson 圈时保持规范等变性。与拓扑信息(例如,来自 Polyakov 圈)结合使用,这种网络原则上可以在格点上逼近任何规范协变函数。我们证明,L-CNN 可以学习和泛化传统卷积神经网络无法找到的规范不变量。