Suppr超能文献

使用文本挖掘和虚拟筛选鉴定血管紧张素转化酶抑制剂。

identification of angiotensin-1 converting enzyme inhibitors using text mining and virtual screening.

机构信息

Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.

出版信息

J Biomol Struct Dyn. 2022 Feb;40(3):1152-1162. doi: 10.1080/07391102.2020.1827038. Epub 2020 Oct 5.

Abstract

Cardiovascular diseases are the world's leading cause of death. Hypertension is an important risk factor for cardiovascular and renal diseases. Angiotensin-converting enzyme (ACE) can be a possible therapeutic target for managing angiotensin I conversion to angiotensin II and ultimately controlling hypertension. Indole is an significant fragment used in many medicines approved by FDA. For this reason, the molecules in their fragments containing" indol" keywords were taken from the Specs-SC (small compound) database. The predicted therapeutc activity values (TAV) of these compounds against hypertension were evaluated using binary models of QSAR by MetaCore/MetaDrug. For the 26 separate QSAR models of toxicity, molecules with measured TAV greater than 0.5 were used. 3792 non-toxic compounds were investigated by molecular docking study and molecular dynamics simulations for their ACE inhibitory activity. Glide standard precision (SP) of Maestro Molecular Modeling pocket was used to perform molecular docking. Short molecular dynamics (MD) simulations (5-ns) were carried out by initiating the top docking poses of selected 40 molecules. To quantitatively evaluate the predicted binding affinity of a screened compound, average MM/GBSA scores of screened ligands were calculated and based on their binding free energy values, hit compounds were identified for the long (100-ns) MD simulations. Root mean square deviation and root mean square fluctuations were also calculated to assess the structural characteristics and observe fluctuations of the 100-ns time scale. Thus, with the application of text mining and integrated molecular modeling we reported novel indole-based hit inhibitors for ACE-1.Communicated by Ramaswamy H. Sarma.

摘要

心血管疾病是世界上主要的死亡原因。高血压是心血管和肾脏疾病的一个重要危险因素。血管紧张素转换酶(ACE)可能是管理血管紧张素 I 转化为血管紧张素 II 并最终控制高血压的一个潜在治疗靶点。吲哚是 FDA 批准的许多药物中使用的重要片段。出于这个原因,从 Specs-SC(小分子)数据库中提取了含有"吲哚"关键字的片段中的分子。使用 MetaCore/MetaDrug 的 QSAR 二元模型评估了这些化合物对高血压的预测治疗活性(TAV)值。对于 26 个独立的毒性 QSAR 模型,使用具有大于 0.5 的测量 TAV 的分子。通过分子对接研究和分子动力学模拟研究了 3792 种非毒性化合物的 ACE 抑制活性。使用 Maestro 分子建模口袋的 Glide 标准精度(SP)进行分子对接。通过启动选定的 40 种分子的顶级对接构象,进行短分子动力学(MD)模拟(5-ns)。为了定量评估筛选化合物的预测结合亲和力,计算了筛选配体的平均 MM/GBSA 评分,并根据其结合自由能值,确定了用于长(100-ns)MD 模拟的命中化合物。还计算了均方根偏差和均方根波动,以评估结构特征并观察 100-ns 时间尺度的波动。因此,我们通过应用文本挖掘和综合分子建模,报道了新型基于吲哚的 ACE-1 抑制剂。由 Ramaswamy H. Sarma 交流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验