Suppr超能文献

一种用于针对ERCC1/XPF蛋白-蛋白相互作用对广泛小分子文库进行虚拟筛选的新算法,以鉴定具有绕过抗性潜力的抗癌分子。

A novel algorithm for the virtual screening of extensive small molecule libraries against ERCC1/XPF protein-protein interaction for the identification of resistance-bypassing potential anticancer molecules.

作者信息

Ghazy Salma, Oktay Lalehan, Durdaği Serdar

机构信息

Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, İstanbul, Turkiye.

Lab for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, İstanbul, Turkiye.

出版信息

Turk J Biol. 2024 Apr 3;48(2):91-111. doi: 10.55730/1300-0152.2686. eCollection 2024.

Abstract

BACKGROUND AND AIM

Cancer cell's innate chemotherapeutic resistance continues to be an obstacle in molecular oncology. This theory is firmly tied to the cancer cells' integral DNA repair mechanisms continuously neutralizing the effects of chemotherapy. Amidst these mechanisms, the nuclear excision repair pathway is crucial in renovating DNA lesions prompted by agents like Cisplatin. The ERCC1/XPF complex stands center-stage as a structure-specific endonuclease in this repair pathway. Targeting the ERCC1/XPF dimerization brings forth a strategy to augment chemotherapy by eschewing the resistance mechanism integral to cancer cells. This study tracks and identifies small anticancer molecules, with ERCC1/XPF inhibiting potential, within extensive small-molecule compound libraries.

MATERIALS AND METHODS

A novel hybrid virtual screening algorithm, conjoining ligand- and target-based approaches, was developed. All-atom molecular dynamics (MD) simulations were then run on the obtained hit molecules to reveal their structural and dynamic contributions within the binding site. MD simulations were followed by MM/GBSA calculations to qualify the change in binding free energies of the protein/ligand complexes throughout MD simulations.

RESULTS

Conducted analyses highlight new potential inhibitors AN-487/40936989 from the SPECS SC library, K219-1359, and K786-1161 from the ChemDiv Representative Set library as showing better predicted activity than previously discovered ERCC1/XPF inhibitor, CHEMBL3617209.

CONCLUSION

The algorithm implemented in this study expands our comprehension of chemotherapeutic resistance and how to overcome it through identifying ERCC1/XPF inhibitors with the aim of enhancing chemotherapeutic impact giving hope for ameliorated cancer treatment outcomes.

摘要

背景与目的

癌细胞固有的化疗耐药性仍然是分子肿瘤学中的一个障碍。这一理论与癌细胞完整的DNA修复机制紧密相关,该机制不断抵消化疗的效果。在这些机制中,核切除修复途径对于修复由顺铂等药物引发的DNA损伤至关重要。ERCC1/XPF复合物作为该修复途径中的一种结构特异性内切酶,处于核心地位。靶向ERCC1/XPF二聚化提出了一种通过避开癌细胞固有的耐药机制来增强化疗效果的策略。本研究在广泛的小分子化合物库中追踪并鉴定具有ERCC1/XPF抑制潜力的抗癌小分子。

材料与方法

开发了一种结合基于配体和基于靶点方法的新型混合虚拟筛选算法。然后对获得的命中分子进行全原子分子动力学(MD)模拟,以揭示它们在结合位点内的结构和动力学贡献。MD模拟之后进行MM/GBSA计算,以确定在整个MD模拟过程中蛋白质/配体复合物结合自由能的变化。

结果

进行的分析突出了来自SPECS SC库的新的潜在抑制剂AN - 487/40936989、来自ChemDiv代表性集库的K219 - 1359和K786 - 1161,它们显示出比先前发现的ERCC1/XPF抑制剂CHEMBL3617209更好的预测活性。

结论

本研究中实施的算法扩展了我们对化疗耐药性以及如何通过鉴定ERCC1/XPF抑制剂来克服它的理解,目的是增强化疗效果,为改善癌症治疗结果带来希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eca/11265927/df9acabcbe47/tjb-48-02-91f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验