Suppr超能文献

针对具有不确定性和输入饱和的自主水面舰艇的基于方位的自适应神经编队缩放控制

Bearing-Based Adaptive Neural Formation Scaling Control for Autonomous Surface Vehicles With Uncertainties and Input Saturation.

作者信息

Lu Yu, Wen Changyun, Shen Tielong, Zhang Weidong

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Oct;32(10):4653-4664. doi: 10.1109/TNNLS.2020.3025807. Epub 2021 Oct 5.

Abstract

When a group of autonomous surface vehicles (ASVs) sail from a wide waterway to a narrow waterway, one difficulty is to keep relative formation with collision avoidance. Scaling the formation sizes with formation shapes invariant is a promising way. This article investigates such a formation scaling control problem of ASVs with uncertainties and input saturation. A novel bearing-based adaptive neural formation scaling control scheme for ASVs is developed. The main idea of this formation scheme is as follows. Choose a small number of leader ASVs based on bearing rigidity theory and program their trajectories according to the kinematics of formation scaling maneuver. Steer remaining ASVs to follow leader ASVs via adaptive neural techniques and the formation sizes can be scaled only by leaders without redesigning control inputs of followers. To deal with the uncertainties of ASVs, weights updating of neural networks is simplified into one-parameter estimation in each control channel. Auxiliary systems are introduced for each ASV to reduce the effect of limited actuator capability. It is shown that desired formation scaling maneuver of ASVs can be achieved with the proposed formation scheme if the augmented formation is infinitesimally bearing rigid. Formation errors are guaranteed to be uniformly ultimately bounded. The main advantage of our scheme over existing results is that directional, computational, and actuator constraints are satisfied simultaneously in the formation scaling control of ASVs. Simulations and comparisons are provided to illustrate the effectiveness of theoretical results.

摘要

当一群自主水面航行器(ASV)从宽阔水道驶向狭窄水道时,一个难题是在避碰的同时保持相对队形。在队形形状不变的情况下缩放队形尺寸是一种很有前景的方法。本文研究了具有不确定性和输入饱和的ASV的这种队形缩放控制问题。针对ASV,开发了一种新颖的基于方位的自适应神经队形缩放控制方案。这种队形方案的主要思想如下。基于方位刚性理论选择少量的领航ASV,并根据队形缩放机动的运动学规划它们的轨迹。通过自适应神经技术引导其余的ASV跟随领航ASV,并且仅通过领航器就可以缩放队形尺寸,而无需重新设计跟随器的控制输入。为了处理ASV的不确定性,神经网络的权重更新在每个控制通道中简化为单参数估计。为每个ASV引入辅助系统以减少有限执行器能力的影响。结果表明,如果增强队形是无限小方位刚性的,则通过所提出的队形方案可以实现ASV所需的队形缩放机动。保证队形误差最终一致有界。我们的方案相对于现有结果的主要优点是,在ASV的队形缩放控制中同时满足了方向、计算和执行器约束。提供了仿真和比较以说明理论结果的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验